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ASP, Amalgamation, and
the Conceptual Blending Workflow

paper #60

Abstract. We present an amalgamation technique used for conceptual blending
– a concept invention method that is advocated in cognitive science as a funda-
mental, and uniquely human engine for creative thinking. Herein, we employ the
search capabilities of ASP to find commonalities among input concepts as part
of the blending process, and we show how our approach fits within a generalised
conceptual blending workflow. Specifically, we orchestrate ASP with imperative
programming languages like Python, to query external tools for theorem proving
and colimit computation. We evaluate our system with examples from various
domains where creativity is important, in particular mathematics and music.

1 Introduction
Creativity is an inherent human capability, that is crucial for the development and in-
vention of new ideas and concepts [2]. This paper addresses a kind of creativity which
Boden [2] calls combinational, and which has been studied by Fauconnier and Turner
[4] in their framework of conceptual blending. In brief, conceptual blending is a process
where one comes up with a novel concept, called the blend, by combining two familiar
input concepts in a serendipitous way. For illustration, consider the classical example of
blending the concepts house and boat (e.g. [5, 4]). A possible result is the invention of
a house-boat concept, where the medium on which a house is situated (land) becomes
the medium on which boat is situated (water), and the resident of the house becomes
the passenger of the boat. Another possible blend is the boat-house, where the boat
becomes the resident of the house.
A computational non-monotonic problem of conceptual blending is to find a common
ground, called generic space, between the two input concepts [4]. For example, the
house-boat blend has the generic space of a person using an object which is not situated
on any medium. Once the generic space has been identified, one can develop possible
blends by specialising the generic space with elements from the input concepts in a
meaningful way. However, this is not trivial because the naive ‘union’ of input spaces
can lead to inconsistencies. For example, the medium on which an object is situated can
not be land and water at the same time. Hence, before combining the input concepts,
it is necessary to generalise, and to remove at least one medium assignment. Another
problem is the huge number of possible blends, which are often not meaningful. For
example, blending house and boat such that the house becomes the passenger of the
boat is not very convincing. In this work, we present a system that can deal with such
problems, and that addresses the following question:
“How can we use ASP as a non-monotonic search engine to find a generic space among
input concepts, and how can we orchestrate this search process with external tools to
produce meaningful blends within a computationally feasible system?”
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Towards this, we use a mixed declarative-imperative amalgams process known from
case-based reasoning [13], which coordinates the generalisation and the meaningful
combination of input concepts.

2 Preliminaries
Goguen [5] proposes to model the input concepts of blending as semiotic systems,
which are essentially algebraic specifications extended by priority information about
their elements. The main advantage of this approach is being able to provide a general
enough, but computational feasible representation, while being able to resolve inconsis-
tencies. We represent semiotic systems by using the Common Algebraic Specification
Language (CASL) [12], and extend it by considering priority information for operators,
sorts, predicates and axioms as follows:

Definition 1 (Prioritised CASL specification (PCS)). A prioritised CASL specifica-
tion (PCS) is a tuple s = 〈DST ,ST ,.,DO,O,P,DA,A, prio〉 with:

– a setDST of data-sorts and a set ST of sorts, along with a preorder . that defines
a sub-sort relationship;

– a set DO of data-operators, and a set O of operators o : s1 × · · · × sn 7→ sd that
map zero or more objects of argument sorts s1, · · · , sn to a range sort sr;

– a set P of predicates p : s1 × · · · × sn that map zero or more objects of argument
sorts s1, · · · , sn to Boolean values;

– a set DA of data-axioms and a set A of axioms;
– a function prio : DST ∪ST ∪DO∪O∪P ∪DA∪A 7→ N that assigns a priority

to all elements in a specification. The priority for data elements is always 0.

We refer to the listed constituents of a PCS simply as the elements of a PCS, denoted by
e, and we say that two PCS are compatible if all of their elements, except the priority
function, are equal.

Data elements are used as a fixed shared background theory of the input specifications
[5, Def.1], e.g, a theory about integer numbers. We use set-theoretical notation to denote
addition and removal of operators, predicates axioms and sorts of a CASL specification
as obvious. For example, let e be an element of a specification s, then we denote the
removal or containment of e in s by writing s \ e or e ∈ s respectively.
Goguen [5]’s algebraic view on blending suggests to compute the blend of input speci-
fications as their categorical colimit [11]. The colimit requires morphisms to be defined
between the signatures of algebraic specifications, in particular between the generic
space and the input concepts. We define morphisms between PCS signatures similar to
[5, Def.2] as follows:

Definition 2 (Morphisms between PCS). Given two PCS s1, s2, a morphism m :
s1 7→ s2 is a partial surjective function that maps sorts of s1 to sorts of s2, opera-
tors of s1 to operators of s2, predicates of s1 to predicates of s2, such that

– for all sorts sa, sb ∈ s1, if sa . sb, then m(sa) . m(sb),
– if o : s1, . . . , sn 7→ sd is an operator of s1, then, if defined,m(o) : m(s1), . . . ,m(sn) 7→
m(sd) is an operator of s2,

– if p : s1, . . . , sn is a predicate of s1, then, if defined, m(p) : m(s1), . . . ,m(sn) is
a predicate of s2,

– m is an identity mapping for data sorts and data operators in s1,
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Fig. 1: Amalgamation workflow

3 ASP-driven Blending by Amalgamation
We employ an interleaved declarative-imperative amalgamation process to search for
generalisations of input spaces that produce and evaluate consistent blends.

3.1 System Description
The workflow of our system is depicted in Figure 1. First, the input PCS s1, s2 are
translated into ASP facts (see Sec. 3.2). Then, s1, s2 are iteratively generalised by an
ASP solver until a generic space is found. Each generalisation is represented by a fact
exec(γ, s, t), where t is an iterator and γ is a generalisation operator that, e.g., removes
an axiom or generalises a sort (see Sec. 3.3). The execution of generalisation operators
is repeated until the generalised versions of the input specifications are compatible in
the sense of Def.1, i.e., until a generic space is found. We write s(t) to denote the t-th
generalisation of s. For example, a first generalisation of the house concept might be
the concept of a house that is not situated on any medium. In order to find consistent
blends, we apply the category-theoretical colimit operation using the HETS toolset [11]
to compose generalisations of input specifications. The colimit is applied on different
combinations of generalisations, and for each result we query a theorem prover for
consistency. An example for a consistent house-boat blend is the combination of the
generalised boat on the medium water, but without a passenger, and a generalised house
with a resident, but without a medium.
To eliminate uninteresting blends from our search process, we consider that more promis-
ing blends are those that require less generalisations. Consequently, we go from less
general generalisations to more general generalisations and stop when a consistent col-
imit is achieved. Thereafter, the result is evaluated using certain metrics that are inspired
by Fauconnier and Turner [4]’s optimality principles of blending to assess the quality
of the blend (see Sec.3.5). Note that different stable models, and therefore different
generalisations, can be found by the ASP solver, which lead to different blends.

3.2 Modelling Algebraic Specifications in ASP
In order to find the generic space and to avoid inconsistencies that arise from the naive
combination of input specifications, we relax prioritised CASL specifications using gen-
eralisation operators in a step-wise transition process. Generalisation operators modify
algebraic specifications by removing operators, sorts, predicates or axioms, or by re-
naming these elements in a step-wise transition process. In the following, we use t to
denote a step-counter that represents the number of modifications made to a specifica-
tion. We assume sorts, operators and axioms for data as common among input specifi-
cations, so that we do not need to consider them in the ASP-based reasoning process.
With this, we represent prioritised CASL specifications in ASP as follows:
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I For each sort s in a specification s with and a parent sort sp we state the facts:
sort(s, s, t) (1a)

hasParent(s, s, sp, t) (1b)
A fact (1a) assigns a sort s to a specification s at a step t, and (1b) assigns a parent sort.
I For each operator o : s1 × · · · × sn 7→ sr in a specification s we have:

op(s, o, t) (2a)
opHasSort(s, o, s1, 1, t) · · · opHasSort(s, o, sn, n, t) (2b)

opHasSort(s, o, sr, rng, t) (2c)
Here, and facts (2b),(2c) state the arguments and range sorts of an operator.
I Similarly, for each predicate p : s1 × · · · × sn in s we generate the LP facts:

hasPred(s, p, t) (3a)
predHasSort(s, p, s1, 1, t) · · · predHasSort(s, p, sn, n, t) (3b)

I For each axiom a with prio(a) = vp we determine a logical equivalence class
of that axiom, denoted eqa, by passing the axiom to a Python function, which checks
for logical equivalence of axioms within all specifications using an external theorem
prover. All logically equivalent axioms have the same equivalence class, e.g., ¬a ∨ b
has the same equivalence class as a → b. We also determine the elements, i.e, sorts,
operators and predicates, that are involved in an axiom. This information are used in the
preconditions of removal operators. For example, operator removal has the precondition
that there exists no atom that involves the operator. Having computed the equivalence
class eqa and determined ne elements that are involved in an axiom, we generate the
following facts for each axiom a in a specification s.

hasAx(s, a, t) (4a)
axInvolvesElem(s, a, e1, t), . . . , axInvolvesElem(s, a, ene

, t) (4b)
axHasEqClass(s, a, eqa, t) (4c)

We represent the priority function prio of a PCS as facts priority(s, e, vp) for each
element e in a specification s. Compatibility among two input specifications, as defined
in Def. 1, is represented by atoms incompatible(s1, s2, t), which are triggered by addi-
tional LP rules if, for s1 and s2, at step t, (i) sorts or subsort relationships are not equal,
or (ii) operator or predicate names are not equal, or (iii) argument and range sorts of
operators and predicates are not equal, or (iv) axioms are not equivalent.

3.3 Formalising Generalisation Operators in ASP
For the generalisation of PCS, we consider two kinds of generalisation operators. The
first kind involves the removal of an element in a specification, and the second kind
involves the renaming of an element. Each generalisation operator is defined via a pre-
condition rule, an inertia rule, and, in case of renaming operations, an effect rule. Pre-
conditions are modelled with a predicate poss/3 that states when it is possible to exe-
cute a generalisation operation, and inertia is modelled with a predicate noninertial/3
that states when an element of a specification stays as it is after the execution of a
generalisation operation. Effect rules model how a generalisation operator changes an
input specification. We represent the execution of a generalisation operator with atoms
exec(γ, s, t), to denote that a generalisation operator γ was applied to s at a step t.



5

Removal operators. A fact exec(rm(e), s, t) denotes the removal of an element e
from a specification s at a step t. It has different precondition rules for removing axioms
(5a), operators (5b), predicates (5c) and sorts (5d):

poss(rm(e), s, t)←ax (s, e, t), exOtherSpecWithoutEqivAx(s, e, t) (5a)
poss(rm(e), s, t)←op(s, e, t), exOtherSpecWithoutElem(s, e, t), (5b)

0{ax (s, A, t) : axInvolvesElem(s, A, e, t)}0
poss(rm(e), s, t)←pred(s, e, t), exOtherSpecWithoutElem(s, e, t), (5c)

0{ax (s, A, t) : axInvolvesElem(s, A, e, t)}0
poss(rm(e), s, t)←sort(s, e, t), exOtherSpecWithoutElem(s, e, t), (5d)

0{ax (s, A, t) : axInvolvesElem(s, A, e, t)}0
noOpUsesSort(s, e, t),noPredUsesSort(s, e, t),

isNotParentSort(s, e, t)

The precondition (5a) for removing an axiom from a specification is that an atom
exOtherSpecWithoutEqivAx (s, a, t) holds. Such atoms are produced, if there exists
at least one other specification that does not have an axiom of the same logical equiv-
alence class. For the removal of other elements we have a similar precondition, i.e.,
exOtherSpecWithoutElem(s, e, t), which denotes that an element can only be re-
moved if it is not involved in another specification. Such preconditions are required
to allow only generic spaces that are least general for all input specifications, in the
sense that elements can not be removed if they are contained in all specifications. We
also require operators, predicates and sorts not to be involved in any axiom before they
can be removed (denoted by 0{ax (s, A, t) : axInvolvesElem(s, A, e, t)}0). Precondi-
tion (5d) for removing sorts has the additional requirement that no operator or predicate
with an argument or range of the sort to be removed exists in the specification. An-
other condition for sort removal is that the sort is not the parent sort of another sort.
Consequently, for sort removal, all axioms, operators and predicate that involve the sort
must be removed first, and child sorts must also be removed first. The inertia rules for
removing elements from a specification are quite simple:

noninertial(s, e, t)← exec(rm(e), s, t) (6)

noninertial atoms will cause an element e to remain in a specification (see rule (10)).

Renaming operators. A fact exec(rename(e, e′, s′), s, t) denotes the renaming of
an element e of a specification s to an element e′ in a specification s′. In contrast to
removal, renaming can only be applied to predicates, operators and sorts. Axioms are
automatically rewritten according to the renamings of the involved elements. Again, we
have different preconditions for renaming operators (7a), predicates (7b) and sorts (7c):

poss(rename(e, e′, s′), s, t)←op(s, e, t), op(s′, e′, t), (7a)
not opSortsNotEquivalent(s, e, s′, e′, t),

not op(s, e′, t), not op(s′, e, t), s 6= s′

poss(rename(e, e′, s′), s, t)←pred(s, e, t), pred(s′, e′, t), (7b)
not predSortsNotEquivalent(s, e, s′, e′, t),

not pred(s, e′, t), not pred(s′, e, t), s 6= s′
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poss(rename(e, e′, s′), s, t)←sort(s, e, t), sort(spec′, e′, t), (7c)
not sort(s, e′, t),not sort(s′, e, t)

A common precondition for all three renaming operations is that the element e must
exist in the specification s, and that e′ must exist in s′. Furthermore, it must not be the
case that e′ is already part of s, and that e is part of s′. In case of renaming operators
and predicates, the argument and range sorts of e and e′ must also be equivalent for
the renaming to become possible. For example, an operator situatedOn : Object 7→
Medium can not be mapped to an operator usedBy : Object 7→ Person , which has
a different range sort. The inertia rules for renaming elements e in a specification are
analogous to the inertial rule for removing elements:

noninertial(s, e, t)← exec(rename(e, e′, s′), s, t) (8)
For renaming, we have the following set of effect rules that assign the new name for the
respective element:

sort(s, e′, t+ 1)← exec(rename(e, e′, s′), s, t), sort(s, e, t) (9a)
op(s, e′, t+ 1)← exec(rename(e, e′, s′), s, t), op(s, e, t)

pred(s, e′, t+ 1)← exec(rename(e, e′, s′), s, t), pred(s, e, t)

These rules state, that a specification will contain an element e′ at a step t + 1 if an
element e has been renamed to e′ at step t.

Inertia. In order to use the inertia rules (6, 8), we need the following rules to state
that elements e remain in a specification s if they are inertial:

sort(s, e′, t+ 1)← not noninertial(s, e, t), sort(s, e, t) (10a)
op(s, e′, t+ 1)← not noninertial(s, e, t), op(s, e, t) (10b)

pred(s, e′, t+ 1)← not noninertial(s, e, t), pred(s, e, t) (10c)
ax (s, e′, t+ 1)← not noninertial(s, e, t), ax(s, e, t) (10d)

Updating Axiom Equivalence. When operators, predicates or sorts that are involved
in an axiom are renamed, then the axiom’s equivalent class changes. Determining log-
ical equivalence of FOL axioms is a well understood research domain on its own, and
we make use of existing theorem proving tools here. Towards this, we use an external
Python function renameEleAndGetNewEqClass in rule (11) during the ASP solving
process, which updates the equivalence class by querying theorem proving tools that
determine a new equivalence class for an axiom if elements are renamed. This happens
by accessing an internal database of axioms that is built dynamically during the ASP
solving process.

axHasEqClass(s, a, eqanew, t+ 1)← axHasEqClass(s, a, eqa, t), (11)

exec(rename(s, e1, e2, t), axInvolvesElem(s, a, e1, t), ax(s, a, t),

eqanew = @renameEleAndGetNewEqClass(eqa, e1, e2)

Additional rules that update the axInvolvesElem atoms if elements are renamed are
also part of our implementation.

3.4 Generalisation Search Process
The main search process that we use ASP for, is to find a generic space, and gener-
alised versions of the input specifications which lead to a consistent blend. This is done
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by successively generating generalisations of the input specifications. A sequence of
generalisation operators defines a generalisation path.

Definition 3 (Generalisation path). Let s be a specification, let {γ1, . . . , γn} be the
set of generalisation operators for s and t1 < · · · < tn be steps. Then we call a set of
atoms P = {exec(γ1, S, t1), · · · , exec(γn, S, tn)} a generalisation path of s.

Generalisation paths are generated with the following choice rule, that allows one or
zero generalisation operations per specification at a time.

0{exec(a, s, t) : poss(a, s, t)}1← not genericReached(t), spec(s). (12)
Generalisation paths lead from the input specifications to a generic space, which is a
generalised specification that describes the commonalities of the input specifications.
A generic space is reached, if the generalised versions of the input specifications are
compatible in the sense of Def.1. We use the incompatible predicate introduced in
Sec. 3.2, to determine if a generic space has been reached.
notGenericReached(t)← spec(s1), spec(s2), incompatible(s1, s2, t), s1 6= s2 (13)

genericReached(t)← not notGenericReached(t) (14)
Finally, a constraint← notGenericReached(t) assures that the generic space is reached
in all Stable Models.

3.5 Composition of generalised input spaces
The generalisation part of our framework generates one stable model for each combi-
nation of generalisation paths that lead to the generic space. The next step in the amal-
gamation process is to compose generalised versions of input specifications to generate
a candidate blend (see Fig. 1). The key component of this composition process is the
categorical colimit [11] of the generalised specifications and the generic space. This
requires also the morphisms from the generic space to the input specifications, which
are induced by the generalisation path (see Def. 3). Since the colimit of algebraic spec-
ification signatures does not consider consistency and priority information, we need to
define a composition operation for prioritised CASL specification, that is based on the
colimit but that also considers priorities and consistency.
Definition 4 (Composition of PCS). The composition c of PCS s1, s2, a generic space
g and total morphisms m1 : g 7→ s1, m2 : g 7→ s2 is defined as follows: Let scolimit be
the colimit of the PCS, as described in [11], with the morphismsmc

1 : s1 7→ scolimit and
mc

2 : s2 7→ scolimit. Let prio1, prio2 denote the priority functions of s1, s2 respectively.
Then the composition c of s1, s2 is a PCS that is constituted by the colimit scolimit,
enriched with the following priority function for elements e in the composed PCS:

prio(e) =
∑

(es,e)∈m1

prio1(es) +
∑

(es,e)∈m2

prio2(es) (15)

Hence, to assign the priorities for the elements e in the composition, Equation (15)
simply adds up the priorities of the respective source elements es in the morphisms.

3.6 Evaluating blends
The next step in the blending process is to evaluate the composition as a whole, ac-
cording to several factors that reflect the rather informal optimisation criteria proposed
by Fauconnier and Turner [4]. Our formal interpretation of these principles considers
logical consistency and the following three evaluation metrics:
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1. We support blends that keep as much as possible and the most important parts
from their input concepts by using the priority information of elements in the input
concepts. This supports the unpacking, web and integration principles in [4].

2. We support blends that maximise common relations among input concepts as a
means to compress the structure of the input spaces. Relations are made common
by appropriate renamings of elements in the input specification. This supports the
vital relations principles in [4].

3. We support blends where the amount of information from the input specifications
is balanced. This supports the double-scope property of blends, which is described
by Fauconnier and Turner [4] as ‘... what we typically find in scientific, artistic, and
literary discoveries and inventions.’

We now define these metrics formally. The amount of information in a PCS is given as:

infoValue(s) =
∑
e∈s

prio(e) (16)

Equation (16) defines the amount of information in a PCS as the sum of the priorities of
all of its elements. A measure for the compression of structure in a composition c with
two morphisms m1 : s1 7→ c and m2 : s2 7→ c is given as:

compression(c) =
∑
e∈c

: eleComp(e) where (17)

eleComp(e) =

{
prio(e) if ∃es1, es2 : (es1, e) ∈ m1 ∧ (es2, e) ∈ m2

0 otherwise
(18)

The compression value of the composition c is the sum of the compression values of
its individual elements (denoted by eleComp). The compression value of an individual
element is the priority of that element if it has isomorphic counterparts es1, e

s
2 in both

input specification mappings and 0 if not. For example, consider the predicate liveIn :
Person×House of the House specification and the predicate ride : Person×Boat of
the Boat specification. Both are mapped to the same element in the composition, i.e.,
the predicate liveIn : Person × House . The liveIn in the composition uses the same
symbol as the one in House , but it carries more information because due to the renaming
it now also represents the ride predicate. We account for this form of compression of
information by adding the priority of liveIn to the compression value.
We also account for the balance of information from both input specifications. That
is, we consider blends to be better where the amount of information from the input
specifications is similar. Towards this we define an imbalance penalty as the half of the
difference of the amount of information from the input specification as follows:

imbalance(c) =
abs(infoValue(s1)− infoValue(s2))

2
(19)

Taking only the half of the difference as imbalance penalty turned out to be more useful
than taking the full difference, because this still encourages blends which have more
information in total, even if they are imbalanced. The final evaluation of a blend is done
by summing up the three evaluation metrics and by considering consistency as follows:

value(c) =

{
infoValue(c) + compression(c)− imbalance(c) if c is consistent
0 otherwise

(20)

Note that the imbalance penalty can never be bigger than the information value, so that
the blend value is always positive.
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4 Proof of Concept
To demonstrate our system we consider examples from two real-world domains where
creativity is important, namely mathematics and music.

4.1 Lemma invention for theorem proving

As an example, we present a general approach for using blending to exploit existing
creative lemmas in a well understood theory, to automatically generate creative lemmas
in another less understood theory. For illustration, consider the following prioritised
theories of natural numbers and lists:
spec NAT =

sort Nat p:3
ops zero : Nat; p:2

s : Nat→ Nat p:3
sum : Nat→ Nat p:2
qsum : Nat × Nat→ Nat p:2
plus : Nat × Nat→ Nat p:1

∀ x, y : Nat
(0) . sum(zero) = zero p:2
(1) . sum(s(x)) = plus(s(x), sum(x)) p:2
(2) . qsum(s(x), y) = p:2

qsum(x, plus(s(x), y))
(3) . qsum(zero, x) = x p:2
(4) . plus(zero, x) = x p:1
(5) . plus(s(x), y) = s(plus(x, y)) p:1
(NT) . sum(x) = qsum(x, zero) p:3
(NL) . plus(sum(x), y) = qsum(x, y) p:3
end

spec LIST =
sorts El p:3

L p:3
ops nil : L; p:2

cons : El × L→ L; p:3
app : L × L→ L; p:2
rev : L→ L; p:2
qrev : L × L→ L p:2

∀ x, y : L; h : El
(6) . rev(nil) = nil p:2
(7) . rev(cons(h, x)) = p:2

app(rev(x), cons(h, nil))
(8) . qrev(nil, x) = x p:2
(9) . qrev(cons(h, x), y) = p:2

qrev(x, cons(h, y))
(10) . app(nil, x) = x p:1
(11) . app(cons(h, x), y) = p:1

cons(h, app(x, y))
(LT) . rev(x) = qrev(x, nil) p:3
end

Important elements of these specifications are the constructor operators s and cons, so
we give them a high priority. Of particular interest here are also the theorems (NT) and
(LT), which are also given a high priority because they provide important insights about
the relation between the tail-recursive functions qrev and qsum, and their primitively
recursive counterparts rev and sum. Proving such theorems by induction is very hard
due to the absence of a universally quantified variable in the second argument of the
tail-recursive version [8]. An expert’s solution here is to use a lemma that generalises
the theorem. An example of such a generalisation is the eureka lemma (NL) in the
naturals, which we assume to be known in this scenario. Discovering such lemmas is
in general a very challenging and well-known problem – see [10, 9] for example. Our
goal is to use blending to discover an analogous lemma which facilitates the inductive
proof of for (LT) in LIST.
Towards this, we first need to find a generic space. However, this is problematic be-
cause the constructor s(n) in the naturals is unary, whereas the constructor cons(h, l)
in lists is binary. In order to resolve this problem we take inspiration from a classical
set theoretic construction of the naturals as the cardinality of a set (see [1] for example)
. In our example we can use list to model the notion of set. In this case the theory of the
naturals corresponds to a theory of lists of exactly the same element. Moreover there
is a generalised motivation to constructing the naturals in this way which is presented
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in Sec. 5. We can exploit this to generalise the theory of naturals by adding an extra
argument to the successor function, but only computing with the second argument –
s(n) becomes s(c, n) where c is some canonical element of a canonical sort C. The
step definition of plus, for example, then becomes plus(s(c, n),m) = s(c, plus(n,m))
– the computation remains in the second element. This way we obtain a correctly typed
generic space by interpreting the renaming and removal operators from the ASP solver,
which allows us to associate the constructors of NAT andLIST with the following gen-
eralisation paths:

PNAT = {
exec(rename(Nat, L, LIST), NAT, 0), exec(rename(zero, nil, LIST), NAT, 1),

exec(rename(C,El, LIST), NAT, 2), exec(rename(s, cons, LIST), NAT, 3),

exec(rename(sum, rev, LIST), NAT, 4), exec(rename(qsum, qrev, LIST), NAT, 5),

exec(rename(plus, app, LIST), NAT, 6),

exec(rm(4), NAT, 7), exec(rm(5), NAT, 8), exec(rm(1), NAT, 9),

exec(rm(2), NAT, 10), exec(rm(c), NAT, 11), exec(rm(NL), NAT, 12)}

PLIST = {
exec(rm(10), LIST, 0), exec(rm(11), LIST, 1), exec(rm(9), LIST, 2), exec(rm(7), LIST, 3)}

After applying the respective renamings and and removals, a generic space is reached,
using the symbols from the List theory. Note, that even though the symbols of the lists
theory are used in the generic space, their meaning is now much more general because
they map to both, the List and the Nat theory, and represent now analogies between
both theories as depicted in Table 1. That is, the generic space is a general theory with

NAT GENERIC SPACE LIST
Nat Constructed datatype L
C Constructed datatype element El

zero terminal element nil
s constructor cons

sum recursive function rev
qsum tail-recursive function qrev
plus auxiliary function app

Table 1: The generic space and its mappings to the theories LIST and NAT

sorts for the constructed data types and their elements, a binary constructor, a terminal
element, a primitively recursive function, and a tail-recursive function which is defined
in terms of the auxiliary function. After finding the generic space, our framework iter-
ates over different combinations of generalised input specifications and computes the
colimit. It then checks the colimits consistency and computes the blend value. In this
example, the highest composition value for a consistent colimit is 90, where the 4th
generalisation of LIST and the 8th generalisation of NAT is used as input. The result is a
theory of lists with the newly invented lemma app(rev(x), y) = qrev(x, y) which can
be used successfully as a generalisation lemma to prove (LT).
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4.2 Harmony invention for music composition

In the music domain, we consider the use of blending to invent novel chord progres-
sions by blending existing ones, and demonstrate how our approach extends the mu-
sicological framework proposed in [3]. The authors show how they blend chords to
invent novel cadences – short chord progressions that can be understood as ‘punctua-
tion’ within a music piece. While their system is limited to blending single chords, we
are able to blend whole chord progressions, as for example the following perfect ca-
dence and Phrygian cadence, that we represent as algebraic specifications as follows:
spec PERFECTCAD = CHORDPROG then

op c1Perf : Chord p:10
op c2Perf : Chord p:10
. succ(c1Perf, c2Perf ) p:5
. absNote(c1Perf, 7) p:2
. absNote(c1Perf, 11) p:3
. absNote(c1Perf, 2) p:1
. absNote(c1Perf, 5) p:2
. relNote(c1Perf, 0) p:3
. relNote(c1Perf, 4) p:3
. relNote(c1Perf, 7) p:2
. relNote(c1Perf, 10) p:3
. root(c2Perf ) = 0 p:1

end

spec PHRYGCAD = CHORDPROG then
op c1Phryg : Chord p:10
op c2Phryg : Chord p:10
. succ(c1Phryg, c2Phryg) p:5
. absNote(c1Phryg, 10) p:2
. absNote(c1Phryg, 1) p:1
. absNote(c1Phryg, 5) p:2
. relNote(c1Phryg, 0) p:3
. relNote(c1Phryg, 3) p:3
. relNote(c1Phryg, 7) p:2
. root(c2Phryg) = 0 p:1

end

Both specifications are built on a background theory CHORDPROG about chord progres-
sions, which defines the predicate succ to denote the successor relation among chords,
the predicate absNote to determine the absolute notes of a chord, and the predicate
relNote to determine the notes of a chord relative to the root note. This allows one to
define an axiom that defines the relation between absolute and relative notes in the back-
ground theory, and that states when a chord is dissonant. Dissonance is is captured via
axioms that forbid certain relative note combinations. For example, they express that a
chord cannot have a major third (relative note 4) and a minor third (relative note 3) at
the same time, i.e., ∀c : Chord . ¬(relNote(c, 3) ∧ relNote(c, 4)). Given a C major
key, the Phrygian cadence involves a B[min chord followed by a C chord, and the
perfect cadence is a G7 chord followed by a C. The priorities of the axioms that assign
notes to the chords are musicologically justified as described in [3], i.e., the relatives
are given a higher priority, and those absolute notes which are salient within the key are
also given a higher priority. However, in addition to these axioms, our system also con-
siders the priority of individual chords which are represented as operators c1Perf (G7
chord) ,c2Perf (C chord),c1Phryg (B[min chord) and c2Phryg (C chord). Our sys-
tem blends the two cadences and produces a Tritone substitution cadence as the result
with the highest value. The tritone substitution was invented in jazz music decades after
the Phrygian and perfect cadence. It takes the D[ note from the first chord of the Phry-
gian cadence, specified by absNote(c1Phryg, 1), as root of the first chord of the novel
Tritone cadence. The blending also adds the relative seventh of theG7 chord of the per-
fect cadence (relNote(c1Perf , 10)), as well as the major third (relNote(c1Perf , 4))
and the fifth (relNote(c1Perf , 7)) which are present in both chords. The result is a
D[7 chord as first chord of the Tritone substitution. The system also allows to blend
the second chord of one cadence with the first chord of another, so that a novel chord
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progression of three notes is produced. Note that, due to the renaming generalisation
operators, this can be done on the level of cadences and chord progressions as a whole,
and not only on the level of single chords. This makes our system more general than the
one proposed by [3], which can only blend single chords.

5 Conclusion
We present a computational approach for conceptual blending where ASP plays a cru-
cial role in finding the generic space and generalised input specifications. We implement
the generalisation of algebraic specifications using a transition system semantics of pre-
conditions and postconditions within ASP, which allows us to access generalised ver-
sions of the input specifications. These generalised versions of the input specifications
let us find blends which are consist. To the best of our knowledge, there exists currently
no other blending framework that can resolve inconsistencies and automatically find a
generic space, while using a representation language that is similarly expressive as ours.
On top of the ASP-based generalisation, we propose metrics to evaluate the quality of
blends, based on the cognitive optimality principles by Fauconnier and Turner [4].
A number of researchers in the field of computational creativity have recognised the
value of conceptual blending for building creative systems, and particular implementa-
tions of this cognitive theory have been proposed [16, 14, 15, 6, 7, 3]. They are, however,
mostly limited in the expressiveness of their representation language, and it is in most
cases unclear how they deal with inconsistencies and how the generic space is com-
puted. Furthermore, existing approaches lack a sophisticated evaluation to determine
formally how ‘good’ a blend is. An exception is the very sophisticated framework in
[14, 15], which also has optimality criteria based on [4]’s theory. However, the authors
do not say how to find the generic space automatically and how to deal with inconsis-
tencies.
As future work, we want to generalise our approach do discover creative ‘eureka lem-
mas’ in the mathematics to other data structures. For example, a general form of de-
scribing a data structure is to define a constructor as c : list(τ) × list(σ) → σ. This
is to say that a constructor can take any number of non-recursive and recursive argu-
ments to form another version of itself. In the example of naturals, the constructor is
s([], [x]) ≡ s(x) and for lists cons([h], [l]) ≡ cons(h, l). For binary trees with data
at the nodes where the constructor is t::([h], [l1, l2]) since there are two recursive ar-
guments. This allows us to find a mapping in the generic space between constructors,
and hence to use the techniques expressed in this paper to discover eureka lemmas in
new theories. We also want to investigate multi-domain blending of input specifications.
For example, blending the theory of lists with chord progressions should result in op-
erations on chord progressions, as for example a reverse operation, which seems to be
interesting for applications in automated music composition.
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