

Edinburgh Research Explorer

Notions of Bidirectional Computation and Entangled State
Monads

Citation for published version:
Abou-Saleh, F, Cheney, J, Gibbons, J, McKinna, J & Stevens, P 2015, Notions of Bidirectional Computation
and Entangled State Monads. in Mathematics of Program Construction: 12th International Conference, MPC
2015, Königswinter, Germany, June 29--July 1, 2015. Proceedings. Lecture Notes in Computer Science,
vol. 9129, Springer, pp. 187-214. DOI: 10.1007/978-3-319-19797-5_9

Digital Object Identifier (DOI):
10.1007/978-3-319-19797-5_9

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Mathematics of Program Construction

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/43712504?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/978-3-319-19797-5_9
https://www.research.ed.ac.uk/portal/en/publications/notions-of-bidirectional-computation-and-entangled-state-monads(5676e207-709d-4b00-a6a4-288df13ac319).html

Notions of Bidirectional Computation
and Entangled State Monads

Faris Abou-Saleh1, James Cheney2, Jeremy Gibbons1, James McKinna2, and
Perdita Stevens2

1 Department of Computer Science, University of Oxford
firstname.lastname@cs.ox.ac.uk

2 School of Informatics, University of Edinburgh
firstname.lastname@ed.ac.uk

Abstract. Bidirectional transformations (bx) support principled consis-
tency maintenance between data sources. Each data source corresponds
to one perspective on a composite system, manifested by operations to
‘get’ and ‘set’ a view of the whole from that particular perspective. Bx
are important in a wide range of settings, including databases, interac-
tive applications, and model-driven development. We show that bx are
naturally modelled in terms of mutable state; in particular, the ‘set’ oper-
ations are stateful functions. This leads naturally to considering bx that
exploit other computational effects too, such as I/O, nondeterminism,
and failure, all largely ignored in the bx literature to date. We present a
semantic foundation for symmetric bidirectional transformations with ef-
fects. We build on the mature theory of monadic encapsulation of effects
in functional programming, develop the equational theory and important
combinators for effectful bx, and provide a prototype implementation in
Haskell along with several illustrative examples.

1 Introduction

Bidirectional transformations (bx) arise when synchronising data in different
data sources: updates to one source entail corresponding updates to the others,
in order to maintain consistency. When a data source represents the complete
information, this is a straightforward task; an update can be matched by dis-
carding and regenerating the other sources. It becomes more interesting when
one data representation lacks some information that is recorded by another; then
the corresponding update has to merge new information on one side with old
information on the other side. Such bidirectional transformations have been the
focus of a flurry of recent activity—in databases, in programming languages, and
in software engineering, among other fields—giving rise to a flourishing series of
BX Workshops (see http://bx-community.wikidot.com/) and BX Seminars
(in Japan, Germany, and Canada so far: see [6] for an early report on the state
of the art).

The different branches of the bx community have come up with a variety
of different formalisations of bx with conflicting definitions and incompatible

2 F. Abou-Saleh, J. Cheney, J. Gibbons, J. McKinna, P. Stevens

A

{ (Schumann,
Germany,
1810–1856),
(Schubert,
Austria,
1797–1828), . . . }

-

�
getL

setL

M -
getR

�
setR

S

B

Name Nationality

Schubert Austria
Schumann Germany
· · · · · ·

Fig. 1. Effectful bx between sources A and B and with effects in monad M , with hidden
state S , illustrated using the Composers example

extensions, such as lenses [10], relational bx [31], symmetric lenses [13], putback-
based lenses [27], and profunctors [20]. We have been seeking a unification of the
varying approaches. It turns out that quite a satisfying unifying formalism can
be obtained from the perspective of the state monad. More specifically, we are
thinking about two data sources, and stateful computations on acting on pairs
representing these two sources. However, the two components of the pair are
not independent, as two distinct memory cells would be, but are entangled—a
change to one component generally entails a consequent change to the other.

This stateful perspective suggests using monads for bx, much as Moggi showed
that monads unify many computational effects [24]. But not only that; it sug-
gests a way to generalise bx to encompass other features that monads can
handle. In fact, several approaches to lenses do in practice allow for monadic
operations [20, 27]. But there are natural concerns about such an extension:
Are “monadic lenses” legitimate bidirectional transformations? Do they satisfy
laws analogous to the roundtripping (‘GetPut’ and ‘PutGet’) laws of traditional
lenses? Can we compose such transformations? We show that bidirectional com-
putations can be encapsulated in monads, and be combined with other standard
monads to accommodate effects, while still satisfying appropriate equational laws
and supporting composition.

To illustrate our approach informally, consider Figure 1, which is based on
the Composers example [32]. This example relates two data sources A and B :
on the left, an a :: A consists of a set of triples (name,nationality , dates), and on
the right, a b ::B consists of an ordered list of pairs (name,nationality). The two
sources a and b are consistent when they contain the name–nationality pairs,
ignoring dates and ordering. The centre of the figure illustrates the interface
and typical operations of our (effectful) bx, including a monad M , operations
getL :: M A and getR :: M B that return the current values of the left and right
sides, and operations setL :: A→ M () and setR :: B → M () that accept a new
value for the left-hand or right-hand side, possibly performing side-effects in M .

In this example, neither A nor B is obtainable from the other; A omits the
ordering information from B , while B omits the date information from A. This
means that there may be multiple ways to change one side to match a change
to the other. For example, the monadic computation do {b ← getR; setR (b ++
[("Bach", "Germany")])} looks at the current value of the B -side, and modifies
it to include a new pair at the end. Of course, this addition is ambiguous: do we
mean J. S. Bach (1685–1750), J. C. Bach (1735–1782), or another Bach? There

Notions of Bidirectional Computation and Entangled State Monads 3

is no way to give the dates through the B interface; typically, pure bx would
initialise the unspecified part to some default value such as "????-????". Con-
versely, had we inserted the triple ("Bach", "Germany", "1685-1750") on the
left, then there may be several consistent ways to change the right-hand side
to match: for example, inserting at the beginning, the end, or somewhere in
the middle of the list. Again, conventional pure bx must fix some strategy in
advance.

A conventional (pure) bx corresponds (roughly) to taking M = State S ,
where S is some type of states from which we can obtain both A and B ; for
example, S could consist of lists of triples (name,nationality , dates) from which
we can easily extract both A (by forgetting the order) and B (by forgetting
the dates). However, our approach to effectful bx allows many other choices
for M that allow us to use side-effects when restoring consistency. Consider the
following two scenarios, taken from the model-driven development domain, where
the entities being synchronised are ‘model states’ a, b such as UML models or
RDBMS schemas, drawn from suitable ‘model spaces’ A,B . We will revisit them
among the concrete examples in Section 5.

Scenario 1.1 (nondeterminism). As mentioned above, most formal notions
of bx require that the transformation (or programmer) decide on a consistency-
restoration strategy in advance. By contrast, in the Janus Transformation Lan-
guage (JTL) [5], programmers need only specify a consistency relation, allowing
the bx engine to resolve the underspecification nondeterministically. Given a
change to one source, JTL uses an external constraint solver to find a consistent
choice for the other source; there might be multiple choices.

Our effectful bx can handle this by combining state with a nondeterministic
choice monad, taking M = StateT S []. For example, an attempt to add Bach
to the right-hand side could result in several possibilities for the left-hand side
(perhaps using an external source such as Wikipedia to find the dates for can-
didate matches). Conversely, adding Bach to the left-hand side could result in a
nondeterministic choice of all possible positions to add the matching record in
the right-hand list. No previous formalism permits such nondeterministic bx to
be composed with conventional deterministic transformations, or characterises
the laws that such transformations ought to satisfy. ♦

Scenario 1.2 (interaction). Alternatively, instead of automatically trying to
find a single (or all possible) dates for Bach, why not ask the user for help?
In unidirectional model transformation settings, Varró [35] proposed “model
transformation by example”, where the transformation system ‘learns’ gradually,
by prompting its users over time, the desired way to restore consistency in various
situations. One can see this as an (interactive) instance of memoisation.

Our effectful bx can also handle this, using the IO monad in concert with
some additional state to remember past questions and their answers. For exam-
ple, when Bach is added to the right-hand side, the bx can check to see whether
it already knows how to restore consistency. If so, it does so without further ado.
If not, it queries the user to determine how to fill in the missing values needed

4 F. Abou-Saleh, J. Cheney, J. Gibbons, J. McKinna, P. Stevens

for the right-hand side, perhaps having first appealed to some external knowl-
edge base to generate helpful suggestions. It then records the new version of
the right-hand side and updates its state so that the same question is not asked
again. No previous formalism allows for I/O during consistency restoration. ♦

The paper is structured as follows. Section 2 reviews monads as a foundation
for effectful programming, fixing (idealised) Haskell notation used throughout
the paper, and recaps definitions of lenses. Our contributions start in Section 3,
with a presentation of our monadic approach to bx. Section 4 considers a defi-
nition of composition for effectful bx. In Section 5 we discuss initialisation, and
formalise the motivating examples above, along with other combinators and ex-
amples of effectful bx. These examples are the first formal treatments of effects
such as nondeterminism or interaction for symmetric bidirectional transforma-
tions, and they illustrate the generality of our approach. Finally we discuss
related work and conclude. All proofs and code for examples can be found in an
extended version of this paper [1].

2 Background

Our approach to bx is semantics-driven, so we here provide some preliminaries
on semantics of effectful computation – focusing on monads, Haskell’s use of type
classes for them, and some key instances that we exploit heavily in what follows.
We also briefly recap the definitions of asymmetric and symmetric lenses.

2.1 Effectful computation

Moggi’s seminal work on the semantics of effectful computation [24], and much
continued investigation, shows how computational effects can be described using
monads. Building on this, we assume that computations are represented as Kleisli
arrows for a strong monad T defined on a cartesian closed category C of ‘value’
types and ‘pure’ functions. The reader uncomfortable with such generality can
safely consider our definitions in terms of the category of sets and total functions,
with T encapsulating the ‘ambient’ programming language effects: none in a
total functional programming language like Agda, partiality in Haskell, global
state in Pascal, network access in Java, etc.

2.2 Notational conventions

We write in Haskell notation, except for the following few idealisations. We as-
sume a cartesian closed category C, avoiding niceties about lifted types and un-
defined values in Haskell; we further restrict attention to terminating programs.
We use lowercase (Greek) letters for polymorphic type variables in code, and
uppercase (Roman) letters for monomorphic instantiations of those variables in
accompanying prose. We elide constructors and destructors for a newtype, the
explicit witnesses to the isomorphism between the defined type and its structure,

Notions of Bidirectional Computation and Entangled State Monads 5

and use instead a type synonym that equates the defined type and its struc-
ture; e.g., in Section 2.4 we omit the function runStateT from StateT S T A to
S → T (A,S). Except where expressly noted, we assume a kind of Barendregt
convention, that bound variables are chosen not to clash with free variables; for
example, in the definition below of a commutative monad, we elide the explicit
proviso “for x , y distinct variables not free in m,n” (one might take the view
that m,n are themselves variables, rather than possibly open terms that might
capture x , y). We use a tightest-binding lowered dot for field access in records;
e.g., in Definition 3.8 we write bx.getL rather than getL bx; we therefore write
function composition using a centred dot, f · g . The code online expands these
conventions into real Haskell. We also make extensive use of equational reasoning
over monads in do notation [11]. Different branches of the bx community have
conflicting naming conventions for various operations, so we have renamed some
of them, favouring internal over external consistency.

2.3 Monads

Definition 2.1 (monad type class). Type constructors representing notions
of effectful computation are represented as instances of the Haskell type class
Monad :

class Monad τ where
return :: α→ τ α
(>>=) :: τ α→ (α→ τ β)→ τ β -- pronounced ‘bind’

A Monad instance should satisfy the following laws:

return x >>= f = f x
m >>= return = m
(m >>= f)>>= g = m >>= λx . (f x >>= g) ♦

Common examples in Haskell (with which we assume familiarity) include:

type Id α = α -- no effects
data Maybe α = Just α | Nothing -- failure/exceptions
data [α] = [] | α : [α] -- choice
type State σ α = σ → (α, σ) -- state
type Reader σ α = σ → α -- environment
type Writer σ α = (α, σ) -- logging

as well as the (in)famous IO monad, which encapsulates interaction with the
outside world. We need a Monoid σ instance for the Writer σ monad, in order
to support empty and composite logs.

Definition 2.2. In Haskell, monadic expressions may be written using do no-
tation, which is defined by translation into applications of bind:

6 F. Abou-Saleh, J. Cheney, J. Gibbons, J. McKinna, P. Stevens

do {let decls; ms } = let decls in do {ms }
do {a ← m; ms } = m >>= λa.do {ms }
do {m } = m

The body ms of a do expression consists of zero or more ‘qualifiers’, and a final
expression m of monadic type; qualifiers are either ‘declarations’ let decls (with
decls a collection of bindings a = e of patterns a to expressions e) or ‘generators’
a ← m (with pattern a and monadic expression m). Variables bound in pattern
a may appear free in the subsequent body ms; in contrast to Haskell, we assume
that the pattern cannot fail to match. When the return value of m is not used –
e.g., when void – we write do {m; ms } as shorthand for do { ← m; ms } with
its wildcard pattern. ♦

Definition 2.3 (commutative monad). We say that m :: T A commutes in
T if the following holds for all n :: T B :

do {x ← m; y ← n; return (x , y)} = do {y ← n; x ← m; return (x , y)}

A monad T is commutative if all m :: T A commute, for all A. ♦

Definition 2.4. An element z of a monad is called a zero element if it satisfies:

do {x ← z ; f x } = z = do {x ← m; z } ♦

Among monads discussed so far, Id , Reader and Maybe are commutative; if σ is
a commutative monoid, Writer σ is commutative; but many interesting monads,
such as IO and State, are not. The Maybe monad has zero element Nothing , and
List has zero Nil ; the zero element is unique if it exists.

Definition 2.5 (monad morphism). Given monads T and T ′, a monad mor-
phism is a polymorphic function ϕ :: ∀α.T α→ T ′ α satisfying

ϕ (doT {return a }) = doT ′ {return a }
ϕ (doT {a ← m; k a }) = doT ′ {a ← ϕ m;ϕ (k a)}

(subscripting to make clear which monad is used where). ♦

2.4 Combining state and other effects

We recall the state monad transformer (see e.g. Liang et al. [21]).

Definition 2.6 (state monad transformer). State can be combined with
effects arising from an arbitrary monad T using the StateT monad transformer:

type StateT σ τ α = σ → τ (α, σ)

instance Monad τ ⇒ Monad (StateT σ τ) where
return a = λs. return (a, s)
m >>= k = λs.do {(a, s ′)← m s; k a s ′}

Notions of Bidirectional Computation and Entangled State Monads 7

This provides get and set operations for the state type:

get :: Monad τ ⇒ StateT σ τ σ
get = λs. return (s, s)

set :: Monad τ ⇒ σ → StateT σ τ ()
set s ′ = λs. return ((), s ′)

which satisfy the following four laws [28]:

(GG) do {s ← get ; s ′ ← get ; return (s, s ′)} = do {s ← get ; return (s, s)}
(SG) do {set s; get } = do {set s; return s }
(GS) do {s ← get ; set s } = do {return ()}
(SS) do {set s; set s ′} = do {set s ′}

Computations in T embed into StateT S T via the monad morphism lift :

lift :: Monad τ ⇒ τ α→ StateT σ τ α
lift m = λs.do {a ← m; return (a, s)} ♦

Lemma 2.7. Unused gets are discardable:

do { ← get ; m } = do {m } ♦

Lemma 2.8 (liftings commute with get and set). We have:

do {a ← get ; b ← lift m; return (a, b)}
= do {b ← lift m; a ← get ; return (a, b)}

do {set a; b ← lift m; return b} = do {b ← lift m; set a; return b} ♦

Definition 2.9. Some convenient shorthands:

gets :: Monad τ ⇒ (σ → α)→ StateT σ τ α
gets f = do {s ← get ; return (f s)}
eval :: Monad τ ⇒ StateT σ τ α→ σ → τ α
eval m s = do {(a, s ′)← m s; return a }
exec :: Monad τ ⇒ StateT σ τ α→ σ → τ σ
exec m s = do {(a, s ′)← m s; return s ′} ♦

Definition 2.10. We say that a computation m :: StateT S T A is a T -pure
query if it cannot change the state, and is pure with respect to the base monad
T ; that is, m = gets h for some h :: S → A. Note that a T -pure query need
not be pure with respect to StateT S T ; in particular, it will typically read the
state. ♦

Definition 2.11 (data refinement). Given monads M of ‘abstract computa-
tions’ and M ′ of ‘concrete computations’, various ‘abstract operations’ op ::A→
M B with corresponding ‘concrete operations’ op′ :: A→ M ′ B , an ‘abstraction
function’ abs :: M ′ α → M α and a ‘reification function’ conc :: M α → M ′ α,
we say that conc is a data refinement from (M , op) to (M ′, op′) if:

8 F. Abou-Saleh, J. Cheney, J. Gibbons, J. McKinna, P. Stevens

– conc distributes over (>>=)
– abs · conc = id , and
– op′ = conc · op for each of the operations. ♦

Remark 2.12. Given such a data refinement, a composite abstract computa-
tion can be faithfully simulated by a concrete one:

do {a ← op1 (); b ← op2 (a); op3 (a, b)}
= [[abs · conc = id]]

abs (conc (do {a ← op1 (); b ← op2 (a); op3 (a, b)}))
= [[conc distributes over (>>=)]]

abs (do {a ← conc (op1 ()); b ← conc (op2 (a)); conc (op3 (a, b))})
= [[concrete operations]]

abs (do {a ← op′1 (); b ← op′2 (a); op′3 (a, b)})

If conc also preserves return (so conc is a monad morphism), then we would
have a similar result for ‘empty’ abstract computations too; but we don’t need
that stronger property in this paper, and it does not hold for our main example
(Remark 3.7). ♦

Lemma 2.13. Given an arbitrary monad T , not assumed to be an instance of
StateT , with operations getT :: T S and setT :: S → T () for a type S , such
that getT and setT satisfy the laws (GG), (GS), and (SG) of Definition 2.6, then
there is a data refinement from T to StateT S T . ♦

Proof (sketch). The abstraction function abs from StateT S T to T and the
reification function conc in the opposite direction are given by

abs m = do {s ← getT ; (a, s ′)← m s; setT s ′; return a }
conc m = λs.do {a ← m; s ′ ← getT ; return (a, s ′)}

= do {a ← lift m; s ′ ← lift getT ; set s ′; return a } ut

Remark 2.14. Informally, if T provides suitable get and set operations, we can
without loss of generality assume it to be an instance of StateT . The essence
of the data refinement is for concrete computations to maintain a shadow copy
of the implicit state; conc m synchronises the outer copy of the state with the
inner copy after executing m, and abs m runs the StateT computation m on an
initial state extracted from T , and stores the final state back there. ♦

2.5 Lenses

The notion of an (asymmetric) ‘lens’ between a source and a view was introduced
by Foster et al. [10]. We adapt their notation, as follows.

Definition 2.15. A lens l :: Lens S V from source type S to view type V
consists of a pair of functions which get a view of the source, and update an old
source with a modified view:

Notions of Bidirectional Computation and Entangled State Monads 9

data Lens α β = Lens {view :: α→ β, update :: α→ β → α}

We say that a lens l :: Lens S V is well behaved if it satisfies the two round-
tripping laws

(UV) l .view (l .update s v) = v
(VU) l .update s (l .view s) = s

and very well-behaved or overwritable if in addition

(UU) l .update (l .update s v) v ′ = l .update s v ′ ♦

Remark 2.16. Very well-behavedness captures the idea that, after two succes-
sive updates, the second update completely overwrites the first. It turns out to
be a rather strong condition, and many natural lenses do not satisfy it. Those
that do generally have the special property that source S factorises cleanly into
V × C for some type C of ‘complements’ independent of V , and so the view is
a projection. For example:

fstLens :: Lens (a, b) a
fstLens = Lens fst u where u (a, b) a ′ = (a ′, b)

sndLens :: Lens (a, b) b
sndLens = Lens snd u where u (a, b) b′ = (a, b′)

But in general, the V may be computed from and therefore depend on all of the
S value, and there is no clean factorisation of S into V × C . ♦

Asymmetric lenses are constrained, in the sense that they relate two types S
and V in which the view V is completely determined by the source S . Hofmann
et al. [13] relaxed this constraint, introducing symmetric lenses between two
types A and B , neither of which need determine the other:

Definition 2.17. A symmetric lens from A to B with complement type C
consists of two functions converting to and from A and B , each also operating
on C .

data SLens γ α β = SLens {putR :: (α, γ)→ (β, γ), putL :: (β, γ)→ (α, γ)}

We say that symmetric lens l is well-behaved if it satisfies the following two laws:

(PutRL) l .putR (a, c) = (b, c′) ⇒ l .putL (b, c′) = (a, c′)
(PutLR) l .putL (b, c) = (a, c′) ⇒ l .putR (a, c′) = (b, c′)

(There is also a stronger notion of very well-behavedness, but we do not need it
for this paper.) ♦

Remark 2.18. The idea is that A and B represent two overlapping but dis-
tinct views of some common underlying data, and the so-called complement C
represents their amalgamation (not necessarily containing all the information

10 F. Abou-Saleh, J. Cheney, J. Gibbons, J. McKinna, P. Stevens

from both: rather, one view plus the complement together contain enough infor-
mation to reconstruct the other view). Each function takes a new view and the
old complement, and returns a new opposite view and a new complement. The
two well-behavedness properties each say that after one update operation, the
complement c′ is fully consistent with the current views, and so a subsequent
opposite update with the same view has no further effect on the complement.

♦

3 Monadic bidirectional transformations

We have seen that the state monad provides a pair get , set of operations on the
state. A symmetric bx should provide two such pairs, one for each data source;
these four operations should be effectful, not least because they should operate
on some shared consistent state. We therefore introduce the following general
notion of monadic bx (which we sometimes call ‘mbx’, for short).

Definition 3.1. We say that a data structure t :: BX T A B is a bx between A
and B in monad T when it provides appropriately typed functions:

data BX τ α β = BX {getL :: τ α, setL :: α→ τ (),
getR :: τ β, setR :: β → τ ()} ♦

3.1 Entangled state

The get and set operations of the state monad satisfy the four laws (GG), (SG),
(GS), (SS) of Definition 2.6. More generally, one can give an equational theory of
state with multiple memory locations; in particular, with just two locations ‘left’
(L) and ‘right’ (R), the equational theory has four operations getL, setL, getR,
setR that match the BX interface. This theory has four laws for L analogous to
those of Definition 2.6, another four such laws for R, and a final four laws stat-
ing that the L-operations commute with the R-operations. But this equational
theory of two memory locations is too strong for interesting bx, because of the
commutativity requirement: the whole point of the exercise is that invoking setL
should indeed affect the behaviour of a subsequent getR, and symmetrically. We
therefore impose only a subset of those twelve laws on the BX interface.

Definition 3.2. A well-behaved BX is one satisfying the following seven laws:

(GLGL) do {a ← getL; a ′ ← getL; return (a, a ′)}
= do {a ← getL; return (a, a)}

(SLGL) do {setL a; getL} = do {setL a; return a }
(GLSL) do {a ← getL; setL a } = do {return ()}
(GRGR) do {a ← getR; a ′ ← getR; return (a, a ′)}

= do {a ← getR; return (a, a)}
(SRGR) do {setR a; getR} = do {setR a; return a }
(GRSR) do {a ← getR; setR a } = do {return ()}

Notions of Bidirectional Computation and Entangled State Monads 11

(GLGR) do {a ← getL; b ← getR; return (a, b)}
= do {b ← getR; a ← getL; return (a, b)}

We further say that a BX is overwritable if it satisfies

(SLSL) do {setL a; setL a ′} = do {setL a ′}
(SRSR) do {setR a; setR a ′} = do {setR a ′} ♦

We might think of the A and B views as being entangled ; in particular, we call
the monad arising as the initial model of the theory with the four operations
getL, setL, getR, setR and the seven laws (GLGL). . . (GLGR) the entangled state
monad.

Remark 3.3. Overwritability is a strong condition, corresponding to very well-
behavedness of lenses [10], history-ignorance of relational bx [31] etc.; many
interesting bx fail to satisfy it. Indeed, in an effectful setting, a law such as
(SLSL) demands that setL a ′ be able to undo (or overwrite) any effects arising
from setL a; such behaviour is plausible in the pure state-based setting, but not
in general. Consequently, we do not demand overwritability in what follows. ♦

Definition 3.4. A bx morphism from bx1 :: BX T1 A B to bx2 :: BX T2 A B
is a monad morphism ϕ : ∀α.T1 α → T2 α that preserves the bx operations,
in the sense that ϕ (bx1.getL) = bx2.getL and so on. A bx isomorphism is an
invertible bx morphism, i.e. a pair of monad morphisms ι :: ∀α.T1 α → T2 α
and ι−1 : ∀α.T2 α → T1 α which are mutually inverse, and which also preserve
the operations. We say that bx1 and bx2 are equivalent (and write bx1 ≡ bx2) if
there is a bx isomorphism between them. ♦

3.2 Stateful BX

The get and set operations of a BX , and the relationship via entanglement
with the equational theory of the state monad, strongly suggest that there is
something inherently stateful about bx; that will be a crucial observation in
what follows. In particular, the getL and getR operations of a BX T A B reveal
that it is in some sense storing an A × B pair; conversely, the setL and setR
operations allow that pair to be updated. We therefore focus on monads of the
form StateT S T , where S is the ‘state’ of the bx itself, capable of recording an
A and a B , and T is a monad encapsulating any other ambient effects that can
be performed by the ‘get’ and ‘set’ operations.

Definition 3.5. We introduce the following instance of the BX signature (note
the inverted argument order):

type StateTBX τ σ α β = BX (StateT σ τ) α β ♦

Remark 3.6. In fact, we can say more about the pair inside a bx::BX T A B : it
will generally be the case that only certain such pairs are observable. Specifically,

12 F. Abou-Saleh, J. Cheney, J. Gibbons, J. McKinna, P. Stevens

we can define the subset R ⊆ A×B of consistent pairs according to bx, namely
those pairs (a, b) that may be returned by

do {a ← getL; b ← getR; return (a, b)}

We can see this subset R as the consistency relation between A and B maintained
by bx. We sometimes write AonB for this relation, when the bx in question is
clear from context. ♦

Remark 3.7. Note that restricting attention to instances of StateT is not as
great a loss of generality as might at first appear. Consider a well-behaved bx
of type BX T A B , over some monad T not assumed to be an instance of
StateT . We say that a consistent pair (a, b) :: AonB is stable if, when setting the
components in either order, the later one does not disturb the earlier:

do {setL a; setR b; getL} = do {setL a; setR b; return a }
do {setR b; setL a; getR} = do {setR b; setL a; return b}

We say that the bx itself is stable if all its consistent pairs are stable. Stability
does not follow from the laws, but many bx do satisfy this stronger condition.
And given a stable bx, we can construct get and set operations for AonB pairs,
satisfying the three laws (GG), (GS), (SG) of Definition 2.6. By Lemma 2.13,
this gives a data refinement from T to StateT S T , and so we lose nothing by
using StateT S T instead of T . Despite this, we do not impose stability as a
requirement in the following, because some interesting bx are not stable. ♦

We have not found convincing examples of StateTBX in which the two get
functions have effects from T , rather than being T -pure queries. When the get
functions are T -pure queries, we obtain the get/get commutation laws (GLGL),
(GRGR), (GLGR) for free [11], motivating the following:

Definition 3.8. We say that a well-behaved bx :: StateTBX T S A B in the
monad StateT S T is transparent if getL, getR are T -pure queries, i.e. there
exist readL :: S → A and readR :: S → B such that bx.getL = gets readL and
bx.getR = gets readR. ♦

Remark 3.9. Under the mild condition (Moggi’s monomorphism condition [24])
on T that return be injective, readL and readR are uniquely determined for a
transparent bx; so informally, we refer to bx.readL and bx.readR, regarding them
as part of the signature of bx. The monomorphism condition holds for the var-
ious monads we consider here (provided we have non-empty types σ for State,
Reader , Writer). ♦

Now, transparent StateTBX compose (Section 4), while general bx with ef-
fectful gets do not. So, in what follows, we confine our attention to transparent
bx.

Notions of Bidirectional Computation and Entangled State Monads 13

3.3 Subsuming lenses

Asymmetric lenses, as in Definition 2.15, are subsumed by StateTBX . To sim-
ulate l :: Lens A B , one uses a StateTBX on state A and underlying monad
Id :

BX get set getR setR where
getR = do {a ← get ; return (l .view a)}
setR b′ = do {a ← get ; set (l .update a b′)}

Symmetric lenses, as in Definition 2.17, are subsumed by our effectful bx too.
In a nutshell, to simulate sl :: SLens C A B one uses StateTBX Id S where
S ⊆ A × B × C is the set of ‘consistent triples’ (a, b, c), in the sense that
sl .putR (a, c) = (b, c) and sl .putL (b, c) = (a, c):

BX getL setL getL setR where
getL = do {(a, b, c)← get ; return a }
getR = do {(a, b, c)← get ; return b}
setL a ′ = do {(a, b, c)← get ; let (b′, c′) = sl .putR (a, c); set (a ′, b′, c′)}
setR b′ = do {(a, b, c)← get ; let (a ′, c′) = sl .putL (b, c); set (a ′, b′, c′)}

Asymmetric lenses generalise straightforwardly to accommodate effects in an
underlying monad too. One can define

data MLens τ α β = MLens {mview :: α→ β,
mupdate :: α→ β → τ α}

with corresponding notions of well-behaved and very-well-behaved monadic lens.
(Diviánszky [8] and Pacheco et al. [27], among others, have proposed similar
notions.) However, it turns out not to be straightforward to establish a corre-
sponding notion of ‘monadic symmetric lens’ incorporating other effects. In this
paper, we take a different approach to combining symmetry and effects; we defer
further discussion of the different approaches to MLenses and the complications
involved in extending symmetric lenses with effects to a future paper.

4 Composition

An obviously crucial question is whether well-behaved monadic bx compose.
They do, but the issue is more delicate than might at first be expected. Of
course, we cannot expect arbitrary BX to compose, because arbitrary monads
do not. Here, we present one successful approach for StateTBX , based on lifting
the component operations on different state types (but the same underlying
monad of effects) into a common compound state.

Definition 4.1 (StateT embeddings from lenses). Given a lens from A to
B , we can embed a StateT computation on the narrower type B into another
computation on the wider type A, wrt the same underlying monad T :

14 F. Abou-Saleh, J. Cheney, J. Gibbons, J. McKinna, P. Stevens

ϑ :: Monad τ ⇒ Lens α β → StateT β τ γ → StateT α τ γ
ϑ l m = do a ← get ; let b = l .view a;

(c, b′)← lift (m b);
let a ′ = l .update a b′;
set a ′; return c ♦

Essentially, ϑ l m uses l to get a view b of the source a, runs m to get a return
value c and updated view b′, uses l to update the view yielding an updated
source a ′, and returns c.

Lemma 4.2. If l ::Lens A B is very well-behaved, then ϑ l is a monad morphism.
♦

Definition 4.3. By Lemma 4.2, and since fstLens and sndLens are very well-
behaved, we have the following monad morphisms lifting stateful computations
to a product state space:

left :: Monad τ ⇒ StateT σ1 τ α→ StateT (σ1, σ2) τ α
left = ϑ fstLens

right :: Monad τ ⇒ StateT σ2 τ α→ StateT (σ1, σ2) τ α
right = ϑ sndLens ♦

Definition 4.4. For bx1 :: StateTBX T S1 A B , bx2 :: StateTBX T S2 B C ,
define the join S1 bx1

onbx2
S2 informally as the subset of S1 × S2 consisting of

the pairs (s1, s2) in which observing the middle component of type B in state s1
yields the same result as in state s2. We might express this set-theoretically as
follows:

S1 bx1
onbx2

S2 = {(s1, s2) | eval (bx1.getR) s1 = eval (bx2.getL) s2}

More generally, one could state a categorical definition in terms of pullbacks. In
Haskell, we can only work with the coarser type of raw pairs (S1,S2). Note that
the equation in the set comprehension compares two computations of type T B ;
but if the bx are transparent, and return injective as per Remark 3.9, then the
definition simplifies to:

S1 bx1
onbx2

S2 = {(s1, s2) | bx1.readR s1 = bx2.readL s2}

The notation S1 bx1
onbx2

S2 explicitly mentions bx1 and bx2, but we usually just
write S1onS2. No confusion should arise from using the same symbol to denote
the consistent pairs of a single bx, as we did in Remark 3.6. ♦

Definition 4.5. Using left and right , we can define composition by:

(;) :: Monad τ ⇒
StateTBX σ1 τ α β → StateTBX σ2 τ β γ → StateTBX (σ1onσ2) τ α γ

bx1 ; bx2 = BX getL setL getR setR where
getL = do { left (bx1.getL)}

Notions of Bidirectional Computation and Entangled State Monads 15

getR = do {right (bx2.getR)}
setL a = do { left (bx1.setL a); b ← left (bx1.getR); right (bx2.setL b)}
setR c = do {right (bx2.setR c); b ← right (bx2.getL); left (bx1.setR b)}

Essentially, to set the left-hand side of the composed bx, we first set the left-hand
side of the left component bx1, then get bx1’s R-value b, and set the left-hand
side of bx2 to this value; and similarly on the right. Note that the composition
maintains the invariant that the compound state is in the subset σ1onσ2 of
σ1 × σ2. ♦

Theorem 4.6 (transparent composition). Given transparent (and hence
well-behaved) bx1 :: StateTBX S1 T A B and bx2 :: StateTBX S2 T B C ,
their composition bx1 ; bx2 :: StateTBX (S1onS2) T A C is also transparent. ♦

Remark 4.7. Unpacking and simplifying the definitions, we have:

bx1 ; bx2 = BX getL setL getR setR where
getL = do {(s1,)← get ; return (bx1.readL s1)}
getR = do {(, s2)← get ; return (bx2.readR s2)}
setL a ′ = do {(s1, s2)← get ;

((), s ′1)← lift (bx1.setL a ′ s1);
let b = bx1.readR s ′1;
((), s ′2)← lift (bx2.setL b s2);
set (s ′1, s

′
2)}

setR c′ = do {(s1, s2)← get ;
((), s ′2)← lift (bx2.setR c′ s2);
let b = bx2.readL s ′2;
((), s ′1)← lift (bx1.setR b s1);
set (s ′1, s

′
2)} ♦

Remark 4.8. Allowing effectful gets turns out to impose appreciable extra tech-
nical difficulty. In particular, while it still appears possible to prove that compo-
sition preserves well-behavedness, the identity laws of composition do not appear
to hold in general. At the same time, we currently lack compelling examples that
motivate effectful gets; the only example we have considered that requires this
capability is Example 5.11 in Section 5. This is why we mostly limit attention
to transparent bx. ♦

Composition is usually expected to be associative and to satisfy identity laws.
We can define a family of identity bx as follows:

Definition 4.9 (identity). For any underlying monad instance, we can form
the identity bx as follows:

identity :: Monad τ ⇒ StateTBX τ α α α
identity = BX get set get set

Clearly, this bx is well-behaved, indeed transparent, and overwritable. ♦

16 F. Abou-Saleh, J. Cheney, J. Gibbons, J. McKinna, P. Stevens

However, if we ask whether bx = identity ; bx, we are immediately faced with a
problem: the two bx do not even have the same state types. Similarly when we
ask about associativity of composition. Apparently, therefore, as for symmetric
lenses [13], we must satisfy ourselves with equality only up to some notion of
equivalence, such as the one introduced in Definition 3.4.

Theorem 4.10. Composition of transparent bx satisfies the identity and asso-
ciativity laws, modulo ≡.

(Identity) identity ; bx ≡ bx ≡ bx ; identity
(Assoc) bx1 ; (bx2 ; bx3) ≡ (bx1 ; bx2) ; bx3 ♦

5 Examples

We now show how to use and combine bx, and discuss how to extend our ap-
proach to support initialisation. We adapt some standard constructions on sym-
metric lenses, involving pairs, sums and lists. Finally we investigate some ef-
fectful bx primitives and combinators, culminating with the two examples from
Section 1.

5.1 Initialisation

Readers familiar with bx will have noticed that so far we have not mentioned
mechanisms for initialisation, e.g. ‘create’ for asymmetric lenses [10], ‘missing’
in symmetric lenses [13], or Ω in relational bx terminology [31]. Moreover, as we
shall see in Section 5.2, initialisation is also needed for certain combinators.

Definition 5.1. An initialisable StateTBX is a StateTBX with two additional
operations for initialisation:

data InitStateTBX τ σ α β = InitStateTBX {
getL :: StateT σ τ α, setL :: α→ StateT σ τ (), initL :: α→ τ σ,
getR :: StateT σ τ β, setR :: β → StateT σ τ (), initR :: β → τ σ}

The initL and initR operations build an initial state from one view or the other,
possibly incurring effects in the underlying monad. Well-behavedness of the bx
requires in addition:

(ILGL) do {s ← bx.initL a; bx.getL s }
= do {s ← bx.initL a; return (a, s)}

(IRGR) do {s ← bx.initR b; bx.getR s }
= do {s ← bx.initR b; return (b, s)}

stating informally that initialising then getting yields the initialised value. There
are no laws concerning initialising then setting. ♦

Notions of Bidirectional Computation and Entangled State Monads 17

We can extend composition to handle initialisation as follows:

(bx1 ; bx2).initL a = do {s1 ← bx1.initL a; b ← bx1.getR s1;
s2 ← bx2.initL b; return (s1, s2)}

and symmetrically for initR. We refine the notions of bx isomorphism and equiv-
alence to InitStateTBX as follows. A monad isomorphism ι :: StateT S1 T →
StateT S2 T amounts to a bijection h :: S1 → S2 on the state spaces. An iso-
morphism of InitStateTBX s consists of such an ι and h satisfying the following
equations (and their duals):

ι (bx1.getL) = bx2.getL
ι (bx1.setL a) = bx2.setL a
do {s ← bx1.initL a; return (h s)} = bx2.initL a

Note that the first two equations (and their duals) imply that ι is a conventional
isomorphism between the underlying bx structures of bx1 and bx2 if we ignore
the initialisation operations. The third equation simply says that h maps the
state obtained by initialising bx1 with a to the state obtained by initialising
bx2 with a. Equivalence of InitStateTBX s amounts to the existence of such an
isomorphism.

Remark 5.2. Of course, there may be situations where these operations are
not what is desired. We might prefer to provide both view values and ask the
bx system to find a suitable hidden state consistent with both at once. This can
be accommodated, by providing a third initialisation function:

initBoth :: α→ β → τ (Maybe σ)

However, initBoth and initL, initR are not interdefinable: initBoth requires both
initial values, so is no help in defining a function that has access only to one;
and conversely, given both initial values, there are in general two different ways
to initialise from one of them (and two more to initialise from one and then
set with the other). Furthermore, it is not clear how to define initBoth for the
composition of two bx equipped with initBoth. ♦

5.2 Basic constructions and combinators

It is obviously desirable – and essential in the design of any future bx program-
ming language – to be able to build up bx from components using combinators
that preserve interesting properties, and therefore avoid having to prove well-
behavedness from scratch for each bx. Symmetric lenses [13] admit several stan-
dard constructions, involving constants, duality, pairing, sum types, and lists.
We show that these constructions can be generalised to StateTBX , and establish
that they preserve well-behavedness. For most combinators, the initialisation op-
erations are straightforward; in the interests of brevity, they and obvious duals
are omitted in what follows.

18 F. Abou-Saleh, J. Cheney, J. Gibbons, J. McKinna, P. Stevens

Definition 5.3 (duality). Trivially, we can dualise any bx:

dual :: StateTBX τ σ α β → StateTBX τ σ β α
dual bx = BX bx.getR bx.setR bx.getL bx.setL

This simply exchanges the left and right operations; it preserves transparency
and overwritability of the underlying bx. ♦

Definition 5.4 (constant and pair combinators). StateTBX also admits
constant, pairing and projection operations:

constBX :: Monad τ ⇒ α→ StateTBX τ α () α
fstBX :: Monad τ ⇒ StateTBX τ (α, β) (α, β) α
sndBX :: Monad τ ⇒ StateTBX τ (α, β) (α, β) β

These straightforwardly generalise to bx the corresponding operations for sym-
metric lenses. If they are to be initialisable, fstBX and sndBX also have to take
a parameter for the initial value of the opposite side:

fstIBX :: Monad τ ⇒ β → InitStateTBX τ (α, β) (α, β) α
sndIBX :: Monad τ ⇒ α→ InitStateTBX τ (α, β) (α, β) β

Pairing is defined as follows:

pairBX :: Monad τ ⇒ StateTBX τ σ1 α1 β1 → StateTBX τ σ2 α2 β2 →
StateTBX τ (σ1, σ2) (α1, α2) (β1, β2)

pairBX bx1 bx2 = BX gl sl gr sr where
gl = do {a1 ← left (bx1.getL); a2 ← right (bx2.getL); return (a1, a2)}
sl (a1, a2) = do { left (bx1.setL a1); right (bx2.setL a2)}
gr = ... -- dual
sr = ... -- dual ♦

Other operations based on isomorphisms, such as associativity of pairs, can
be lifted to StateTBX s without problems. Well-behavedness is immediate for
constBX , fstBX , sndBX and for any other bx that can be obtained from an
asymmetric or symmetric lens. For the pairBX combinator we need to verify
preservation of transparency:

Proposition 5.5. If bx1 and bx2 are transparent (and hence well-behaved),
then so is pairBX bx1 bx2. ♦

Remark 5.6. The pair combinator does not necessarily preserve overwritabil-
ity. For this to be the case, we need to be able to commute the set operations of
the component bx, including any effects in T . Moreover, the pairing combina-
tor is not in general uniquely determined for non-commutative T , because the
effects of bx1 and bx2 can be applied in different orders. ♦

Notions of Bidirectional Computation and Entangled State Monads 19

Definition 5.7 (sum combinators). Similarly, we can define combinators
analogous to the ‘retentive sum’ symmetric lenses and injection operations [13].
The injection operations relate an α and either the same α or some unrelated β;
the old α value of the left side is retained when the right side is a β.

inlBX :: Monad τ ⇒ α→ StateTBX τ (α,Maybe β) α (Either α β)
inrBX :: Monad τ ⇒ β → StateTBX τ (β,Maybe α) β (Either α β)

The sumBX combinator combines two underlying bx and allows switching be-
tween them; the state of both (including that of the bx that is not currently in
focus) is retained.

sumBX :: Monad τ ⇒ StateTBX τ σ1 α1 β1 → StateTBX τ σ2 α2 β2 →
StateTBX τ (Bool , σ1, σ2) (Either α1 α2) (Either β1 β2)

sumBX bx1 bx2 = BX gl sl gr sr where
gl = do {(b, s1, s2)← get ;

if b then do {(a1,)← lift (bx1.getL s1); return (Left a1)}
else do {(a2,)← lift (bx2.getL s2); return (Right a2)}}

sl (Left a1) = do {(b, s1, s2)← get ;
((), s ′1)← lift ((bx1.setL a1) s1);
set (True, s ′1, s2)}

sl (Right a2) = do {(b, s1, s2)← get ;
((), s ′2)← lift ((bx2.setL a2) s2);
set (False, s1, s

′
2)}

gr = ... -- dual
sr = ... -- dual ♦

Proposition 5.8. If bx1 and bx2 are transparent, then so is sumBX bx1 bx2.
♦

Finally, we turn to building a bx that operates on lists from one that op-
erates on elements. The symmetric lens list combinators [13] implicitly regard
the length of the list as data that is shared between the two views. The for-
getful list combinator forgets all data beyond the current length. The retentive
version maintains list elements beyond the current length, so that they can be
restored if the list is lengthened again. We demonstrate the (more interesting)
retentive version, making the shared list length explicit. Several other variants
are possible.

Definition 5.9 (retentive list combinator). This combinator relies on the
initialisation functions to deal with the case where the new values are inserted
into the list, because in this case we need the capability to create new values on
the other side (and new states linking them).

listIBX :: Monad τ ⇒
InitStateTBX τ σ α β → InitStateTBX τ (Int , [σ]) [α] [β]

listIBX bx = InitStateTBX gl sl il gr sr ir where

20 F. Abou-Saleh, J. Cheney, J. Gibbons, J. McKinna, P. Stevens

gl = do {(n, cs)← get ; mapM (lift · eval bx.getL) (take n cs)}
sl as = do {(, cs)← get ;

cs ′ ← lift (sets (exec · bx.setL) bx.initL as cs);
set (length as, cs ′)}

il as = do {cs ← mapM (bx.initL) as; return (length as, cs)}
gr = ... -- dual
sr bs = ... -- dual
ir bs = ... -- dual

Here, the standard Haskell function mapM sequences a list of computations,
and sets sequentially updates a list of states from a list of views, retaining any
leftover states if the view list is shorter:

sets :: Monad τ ⇒ (α→ γ → τ γ)→ (α→ τ γ)→ [α]→ [γ]→ τ [γ]
sets set init [] cs = return cs
sets set init (x : xs) (c : cs) = do {c′ ← set x c; cs ′ ← sets set init xs cs;

return (c′ : cs ′)}
sets set init xs [] = mapM init xs ♦

Proposition 5.10. If bx is transparent, then so is listIBX bx. ♦

5.3 Effectful bx

We now consider examples of bx that make nontrivial use of monadic effects. The
careful consideration we paid earlier to the requirements for composability give
rise to some interesting and non-obvious constraints on the definitions, which we
highlight as we go.

For accessibility, we use specific monads in the examples in order to state and
prove properties; for generality, the accompanying code abstracts from specific
monads using Haskell type class constraints instead. In the interests of brevity,
we omit dual cases and initialisation functions, but these are defined in the online
code supplement.

Example 5.11 (environment). The Reader or environment monad is useful
for modelling global parameters. Some classes of bidirectional transformations
are naturally parametrised; for example, Voigtländer et al.’s approach [36] uses
a bias parameter to determine how to merge changes back into lists.

Suppose we have a family of bx indexed by some parameter γ, over a monad
Reader γ. Then we can define

switch :: (γ → StateTBX (Reader γ) σ α β)→ StateTBX (Reader γ) σ α β
switch f = BX gl sl gr sr where

gl = do {c ← lift ask ; (f c).getL}
sl a = do {c ← lift ask ; (f c).setL a }
gr = ... -- dual
sr = ... -- dual

where the standard ask :: Reader γ operation reads the γ value. ♦

Notions of Bidirectional Computation and Entangled State Monads 21

Proposition 5.12. If f c :: StateTBX (Reader C) S A B is transparent for
any c :: C , then switch f is a well-behaved, but not necessarily transparent,
StateTBX (Reader C) S A B . ♦

Remark 5.13. Note that switch f is well-behaved but not necessarily transpar-
ent. This is because the get operations read not only from the designated state
of the StateTBX but also from the Reader environment, and so they are not
(Reader C)-pure. This turns out not to be a big problem in this case, because
Reader C is a commutative monad. But suppose that the underlying monad
were not Reader C but a non-commutative monad such as State C , maintaining
some flag that may be changed by the set operations; in this scenario, it is not
difficult to construct a counterexample to the identity laws for composition. Such
counterexamples are why we have largely restricted attention in this paper to
transparent bx. (Besides, one what argue that it is never necessary for the get
operations to depend on the context; any such dependencies could be handled
entirely by the set operations.) ♦

Example 5.14 (exceptions). We turn next to the possibility of failure. Con-
ventionally, the functions defining a bx are required to be total, but often it is
not possible to constrain the source and view types enough to make this literally
true; for example, consider a bx relating two Rational views whose consistency
relation is {(x, 1/x) | x 6= 0}. A principled approach to failure is to use the Maybe
(exception) monad, so that an attempt to divide by zero yields Nothing .

invBX :: StateTBX Maybe Rational Rational Rational
invBX = BX get setL (gets (λa. 1/a)) setR where

setL a = do { lift (guard (a 6 0)); set a }
setR b = do { lift (guard (b 6 0)); set (1/b)}

where guard b = do {if b then Just () else Nothing } is a standard operation in
the Maybe monad. As another example, suppose we know that A is in the Read
and Show type classes, so each A value can be printed to and possibly read from
a string. We can define:

readSomeBX :: (Read α,Show α)⇒ StateTBX Maybe (α,String) α String
readSomeBX = BX (gets fst) setL (gets snd) setR where

setL a ′ = set (a ′, show a ′)
setR b′ = do {(, b)← get ;

if b b′ then return () else case reads b′ of
((a ′, ""):)→ set (a ′, b′)

→ lift Nothing }

(The function reads returns a list of possible parses with remaining text.) Note
that the get operations are Maybe-pure: if there is a Read error, it is raised
instead by the set operations.

The same approach can be generalised to any monad T having a polymorphic
error value err ::∀α.T α and any pair of partial inverse functions f ::A→ Maybe B
and g :: B → Maybe A (i.e., f a = Just b if and only if g b = Just a, for all a, b):

22 F. Abou-Saleh, J. Cheney, J. Gibbons, J. McKinna, P. Stevens

partialBX :: Monad τ ⇒ (∀α.τ α)→ (α→ Maybe β)→ (β → Maybe α)→
StateTBX τ (α, β) α β

partialBX err f g = BX (gets fst) setL (gets snd) setR where
setL a ′ = case f a ′ of Just b′ → set (a ′, b′)

Nothing → lift err
setR b′ = case g b′ of Just a ′ → set (a ′, b′)

Nothing → lift err

Then we could define invBX and a stricter variation of readSomeBX (one that
will read only a string that it shows—rejecting alternative renderings, white-
space, and so on) as instances of partialBX . ♦

Proposition 5.15. Let f :: A → Maybe B and g :: B → Maybe A be par-
tial inverses and let err be a zero element for T . Then partialBX err f g ::
StateTBX T S A B is well-behaved, where S = {(a, b) | f a = Just b}. ♦

Example 5.16 (nondeterminism—Scenario 1.1 revisited). For simplic-
ity’s sake, we model nondeterminism via the list monad: a ‘nondeterministic
function’ from A to B is represented as a pure function of type A → [B]. The
following bx is parametrised on a predicate ok that checks consistency of two
states, a fix-up function bs that returns the B values consistent with a given A,
and symmetrically a fix-up function as.

nondetBX :: (α→ β → Bool)→ (α→ [β])→ (β → [α])→
StateTBX [] (α, β) α β

nondetBX ok bs as = BX (gets fst) setL (gets snd) setR where
setL a ′ = do {(a, b)← get ;

if ok a ′ b then set (a ′, b) else
do {b′ ← lift (bs a ′); set (a ′, b′)}}

setR b′ = do {(a, b)← get ;
if ok a b′ then set (a, b′) else

do {a ′ ← lift (as b′); set (a ′, b′)}} ♦

Proposition 5.17. Given ok , S = {(a, b) | ok a b}, and as and bs satisfying

a ∈ as b ⇒ ok a b
b ∈ bs a ⇒ ok a b

then nondetBX ok bs as :: StateTBX [] S A B is well-behaved (indeed, it is
clearly transparent). It is not necessary for the two conditions to be equivalences.

♦

Remark 5.18. Note that, in addition to choice, the list monad also allows for
failure: the fix-up functions can return the empty list. From a semantic point of
view, nondeterminism is usually modelled using the monad of finite nonempty
sets. If we had used the nonempty set monad instead of lists, then failure would
not be possible. ♦

Notions of Bidirectional Computation and Entangled State Monads 23

Example 5.19 (signalling). We can define a bx that sends a signal every time
either side changes:

signalBX :: (Eq α,Eq β,Monad τ)⇒ (α→ τ ())→ (β → τ ())→
StateTBX τ σ α β → StateTBX τ σ α β

signalBX sigA sigB bx = BX (bx.getL) sl (bx.getR) sr where
sl a ′ = do {a ← bx.getL; bx.setL a ′;

lift (if a 6 a ′ then sigA a ′ else return ())}
sr b′ = do {b ← bx.getR; bx.setR b′;

lift (if b 6 b′ then sigB b′ else return ())}

Note that sl checks to see whether the new value a ′ equals the old value a, and
does nothing if so; only if they are different does it perform sigA a ′. If the bx is
to be well-behaved, then no action can be performed in the case that a a ′.

For example, instantiating the underlying monad to IO we have:

alertBX :: (Eq α,Eq β)⇒ StateTBX IO σ α β → StateTBX IO σ α β
alertBX = signalBX (λ . putStrLn "Left") (λ . putStrLn "Right")

which prints a message whenever one side changes. This is well-behaved; the set
operations are side-effecting, but the side-effects only occur when the state is
changed. It is not overwritable, because multiple changes may lead to different
signals from a single change.

As another example, we can define a logging bx as follows:

logBX :: (Eq α,Eq β)⇒ StateTBX (Writer [Either α β]) σ α β →
StateTBX (Writer [Either α β]) σ α β

logBX = signalBX (λa. tell [Left a]) (λb. tell [Right b])

where tell :: σ → Writer σ () is a standard operation in the Writer monad
that writes a value to the output. This bx logs a list of all of the views as they
are changed. Wrapping a component of a chain of composed bx with log can
provide insight into how changes at the ends of the chain propagate through
that component. If memory use is a concern, then we could limit the length of
the list to record only the most recent updates – lists of bounded length also
form a monoid. ♦

Proposition 5.20. If A and B are types equipped with a well-behaved no-
tion of equality (in the sense that (a b) = True if and only if a = b),
and bx :: StateTBX T S A B is well-behaved, then signalBX sigA sigB bx ::
StateTBX T S A B is well-behaved. Moreover, signalBX preserves trans-
parency. ♦

Example 5.21 (interaction—Scenario 1.2 revisited). For this example, we
need to record both the current state (an A and a B) and the learned collection
of consistency restorations. The latter is represented as two lists; the first list
contains a tuple ((a ′, b), b′) for each invocation of setL a ′ on a state (, b) result-
ing in an updated state (a ′, b′); the second is symmetric, for setR b′ invocations.

24 F. Abou-Saleh, J. Cheney, J. Gibbons, J. McKinna, P. Stevens

The types A and B must each support equality, so that we can check for pre-
viously asked questions. We abstract from the base monad; we parametrise the
bx on two monadic functions, each somehow determining a consistent match for
one state.

dynamicBX :: (Eq α,Eq β,Monad τ)⇒
(α→ β → τ β)→ (α→ β → τ α)→
StateTBX τ ((α, β), [((α, β), β)], [((α, β), α)]) α β

dynamicBX f g = BX (gets (fst · fst3)) setL (gets (snd · fst3)) setR where
setL a ′ = do {((a, b), fs, bs)← get ;

if a a ′ then return () else
case lookup (a ′, b) fs of

Just b′ → set ((a ′, b′), fs, bs)
Nothing → do {b′ ← lift (f a ′ b);

set ((a ′, b′), ((a ′, b), b′) : fs, bs)}}
setR b′ = ... -- dual

where fst3 (a, b, c) = a. For example, the bx below finds matching states by
asking the user, writing to and reading from the terminal.

dynamicIOBX :: (Eq α,Eq β,Show α,Show β,Read α,Read β)⇒
StateTBX IO ((α, β), [((α, β), β)], [((α, β), α)]) α β

dynamicIOBX = dynamicBX matchIO (flip matchIO)

matchIO :: (Show α,Show β,Read β)⇒ α→ β → IO β
matchIO a b = do {putStrLn ("Setting " ++ show a);

putStr ("Replacement for " ++ show b ++ "?");
s ← getLine; return (read s)}

An alternative way to find matching states, for a finite state space, would be to
search an enumeration [minBound ..maxBound] of the possible values, checking
against a fixed oracle p:

dynamicSearchBX ::
(Eq α,Eq β,Enum α,Bounded α,Enum β,Bounded β)⇒
(α→ β → Bool)→
StateTBX Maybe ((α, β), [((α, β), β)], [((α, β), α)]) α β

dynamicSearchBX p = dynamicBX (search p) (flip (search (flip p)))

search :: (Enum β,Bounded β)⇒ (α→ β → Bool)→ α→ β → Maybe β
search p a = find (p a) [minBound ..maxBound] ♦

Proposition 5.22. For any f , g , the bx dynamicBX f g is well-behaved (it is
clearly transparent). ♦

6 Related work

Bidirectional programming This has a large literature; work on view update
flourished in the early 1980s, and the term ‘lens’ was coined in 2005 [9]. The

Notions of Bidirectional Computation and Entangled State Monads 25

GRACE report [6] surveys work since. We mention here only the closest related
work.

Pacheco et al. [27] present ‘putback-style’ asymmetric lenses; i.e. their laws
and combinators focus only on the ‘put’ functions, of type Maybe s → v → m s,
for some monad m. This allows for effects, and they include a combinator effect
that applies a monad morphism to a lens. Their laws assume that the monad m
admits a membership operation (∈) ::a → m a → Bool . For monads such as List
or Maybe that support such an operation, their laws are similar to ours, but their
approach does not appear to work for other important monads such as IO or
State. In Diviánsky’s monadic lens proposal [8], the get function is monadic, so in
principle it too can have side-effects; as we have seen, this possibility significantly
complicates composition.

Johnson and Rosebrugh [16] analyse symmetric lenses in a general setting of
categories with finite products, showing that they correspond to pairs of (asym-
metric) lenses with a common source. Our composition for StateTBX s uses a
similar idea; however, their construction does not apply directly to monadic
lenses, because the Kleisli category of a monad does not necessarily have finite
products. They also identify a different notion of equivalence of symmetric lenses.

Elsewhere, we have considered a coalgebraic approach to bx [2]. Relating
such an approach to the one presented here, and investigating their associated
equivalences, is an interesting future direction of research.

Macedo et al. [23] observe that most bx research deals with just two models,
but many tools and specifications, such as QVT-R [26], allow relating multiple
models. Our notion of bx generalises straightforwardly to such multidirectional
transformations, provided we only update one source value at a time.

Monads and algebraic effects The vast literature on combining and reasoning
about monads [17,21,22,25] stems from Moggi’s work [24]; we have shown that
bidirectionality can be viewed as another kind of computational effect, so results
about monads can be applied to bidirectional computation.

A promising area to investigate is the algebraic treatment of effects [28],
particularly recent work on combining effects using operations such as sum and
tensor [15] and handlers of algebraic effects [3,19,29]. It appears straightforward
to view entangled state as generated by operations and equations analogous to
the bx laws. What is less clear is whether operations such as composition can
be defined in terms of effect handlers: so far, the theory underlying handlers [29]
does not support ‘tensor-like’ combinations of computations. We therefore leave
this investigation for future work.

The relationship between lenses and state monad morphisms is intriguing,
and hints of it appear in previous work on compositional references by Ka-
gawa [18]. The fact that lenses determine state monad morphisms (Definition 4.1)
appears to be folklore; Shkaravska [30] stated this result in a talk, and it is im-
plicit in the design of the Haskell Data.Lens library [20], but we are not aware
of any previous published proof.

26 F. Abou-Saleh, J. Cheney, J. Gibbons, J. McKinna, P. Stevens

7 Conclusions and further work

We have presented a semantic framework for effectful bidirectional transfor-
mations (bx). Our framework encompasses symmetric lenses, which (as is well-
known) in turn encompass other approaches to bx such as asymmetric lenses [10]
and relational bx [31]; we have also given examples of other monadic effects. This
is an advance on the state of the art of bidirectional transformations: ours is the
first formalism to reconcile the stateful behavior of bx with other effects such as
nondeterminism, I/O or exceptions with due attention paid to the corresponding
laws. We have defined composition for effectful bx and shown that composition
is associative and satisfies identity laws, up to a suitable notion of equivalence
based on monad isomorphisms. We have also demonstrated some combinators
suitable for grounding the design of future bx languages based on our approach.

In future we plan to investigate equivalence, and the relationship with the
work of Johnson and Rosebrugh [16], further. The equivalence we present here
is finer than theirs, and also finer than the equivalence for symmetric lenses
presented by Hofmann et al. [13]. Early investigations, guided by an alternative
coalgebraic presentation [2] of our framework, suggest that the situation for
bx may be similar to that for processes given as labelled transition systems:
it is possible to give many different equivalences which are ‘right’ according to
different criteria. We think the one we have given here is the finest reasonable,
equating just enough bx to make composition work. Another interesting area for
exploration is formalisation of our (on-paper) proofs.

Our framework provides a foundation for future languages, libraries, or tools
for effectful bx, and there are several natural next steps in this direction. In
this paper we explored only the case where the get and set operations read
or write complete states, but our framework allows for generalisation beyond
the category Set and hence, perhaps, into delta-based bx [7], edit lenses [14]
and ordered updates [12], in which the operations record state changes rather
than complete states. Another natural next step is to explore different witness
structures encapsulating the dependencies between views, in order to formulate
candidate principles of Least Change (informally, that “a bx should not change
more than it has to in order to restore consistency”) that are more practical and
flexible than those that can be stated in terms of views alone.

Acknowledgements

Preliminary work on this topic was presented orally at the BIRS workshop
13w5115 in December 2013; a four-page abstract [4] of some of the ideas in
this paper appeared at the Athens BX Workshop in March 2014; and a short
presentation on an alternative coalgebraic approach [2] was made at CMCS 2014.
We thank the organisers of and participants at those meetings and the anony-
mous reviewers for their helpful comments. The work was supported by the UK
EPSRC-funded project A Theory of Least Change for Bidirectional Transforma-
tions [34] (EP/K020218/1, EP/K020919/1).

Notions of Bidirectional Computation and Entangled State Monads 27

References

1. Abou-Saleh, F., Cheney, J., Gibbons, J., McKinna, J., Stevens, P.: Notions of
bidirectional computation and entangled state monads. Tech. rep., TLCBX project
(2015), extended version with proofs, available from http://groups.inf.ed.ac.

uk/bx/

2. Abou-Saleh, F., McKinna, J.: A coalgebraic approach to bidirectional transforma-
tions (2014), short presentation at CMCS

3. Brady, E.: Programming and reasoning with algebraic effects and dependent types.
In: ICFP. pp. 133–144. ACM (2013)

4. Cheney, J., McKinna, J., Stevens, P., Gibbons, J., Abou-Saleh, F.: Entangled state
monads (abstract). In: [33]

5. Cicchetti, A., Di Ruscio, D., Eramo, R., Pierantonio, A.: JTL: A bidirectional and
change propagating transformation language. In: SLE 2010. LNCS, vol. 6563, pp.
183–202. Springer (2010)

6. Czarnecki, K., Foster, J.N., Hu, Z., Lämmel, R., Schürr, A., Terwilliger, J.F.: Bidi-
rectional transformations: A cross-discipline perspective. In: ICMT. LNCS, vol.
5563, pp. 260–283. Springer (2009)

7. Diskin, Z., Xiong, Y., Czarnecki, K.: From state- to delta-based bidirectional model
transformations: the asymmetric case. JOT 10, 6: 1–25 (2011)

8. Diviánszky, P.: LGtk API correction. http://people.inf.elte.hu/divip/LGtk/
CorrectedAPI.html (April 2013)

9. Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce, B.C., Schmitt, A.: Combinators
for bidirectional tree transformations: A linguistic approach to the view update
problem. In: POPL. pp. 233–246. ACM (2005)

10. Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce, B.C., Schmitt, A.: Combinators
for bidirectional tree transformations: A linguistic approach to the view-update
problem. ACM TOPLAS 29(3), 17 (2007), extended version of [9]

11. Gibbons, J., Hinze, R.: Just do it: Simple monadic equational reasoning. In: ICFP.
pp. 2–14. ACM (2011)

12. Hegner, S.J.: An order-based theory of updates for closed database views. Ann.
Math. Art. Int. 40, 63–125 (2004)

13. Hofmann, M., Pierce, B.C., Wagner, D.: Symmetric lenses. In: POPL. pp. 371–384.
ACM (2011)

14. Hofmann, M., Pierce, B.C., Wagner, D.: Edit lenses. In: POPL. pp. 495–508. ACM
(2012)

15. Hyland, M., Plotkin, G.D., Power, J.: Combining effects: Sum and tensor. TCS
357(1-3), 70–99 (2006)

16. Johnson, M., Rosebrugh, R.: Spans of lenses. In: [33]
17. Jones, M.P., Duponcheel, L.: Composing monads. Tech. Rep. RR-1004, DCS, Yale

(1993)
18. Kagawa, K.: Compositional references for stateful functional programming. In:

ICFP. pp. 217–226 (1997)
19. Kammar, O., Lindley, S., Oury, N.: Handlers in action. In: ICFP. pp. 145–158.

ACM (2013)
20. Kmett, E.: lens-4.0.4 library, http://hackage.haskell.org/package/lens
21. Liang, S., Hudak, P., Jones, M.P.: Monad transformers and modular interpreters.

In: POPL. pp. 333–343 (1995)
22. Lüth, C., Ghani, N.: Composing monads using coproducts. In: ICFP. pp. 133–144.

ACM (2002)

28 F. Abou-Saleh, J. Cheney, J. Gibbons, J. McKinna, P. Stevens

23. Macedo, N., Cunha, A., Pacheco, H.: Toward a framework for multidirectional
model transformations. In: [33]

24. Moggi, E.: Notions of computation and monads. Inf.&Comp. 93(1), 55–92 (1991)
25. Mossakowski, T., Schröder, L., Goncharov, S.: A generic complete dynamic logic

for reasoning about purity and effects. FAC 22(3-4), 363–384 (2010)
26. OMG: MOF 2.0 Query/View/Transformation specification (QVT), version 1.1

(January 2011), http://www.omg.org/spec/QVT/1.1/
27. Pacheco, H., Hu, Z., Fischer, S.: Monadic combinators for “putback” style bidirec-

tional programming. In: PEPM. pp. 39–50. ACM (2014), http://doi.acm.org/
10.1145/2543728.2543737

28. Plotkin, G.D., Power, J.: Notions of computation determine monads. In: FOSSACS.
LNCS, vol. 2303, pp. 342–356. Springer (2002)

29. Plotkin, G.D., Pretnar, M.: Handling algebraic effects. LMCS 9(4) (2013)
30. Shkaravska, O.: Side-effect monad, its equational theory and applica-

tions (2005), seminar slides available at: http://www.ioc.ee/~tarmo/tsem05/

shkaravska1512-slides.pdf

31. Stevens, P.: Bidirectional model transformations in QVT: Semantic issues and open
questions. SoSyM 9(1), 7–20 (2010)

32. Stevens, P., McKinna, J., Cheney, J.: ‘Composers’ example. http://

bx-community.wikidot.com/examples:composers (2014)
33. Terwilliger, J., Hidaka, S. (eds.): BX Workshop. http://ceur-ws.org/Vol-1133/

#bx (2014)
34. TLCBX Project: A theory of least change for bidirectional transformations.

http://www.cs.ox.ac.uk/projects/tlcbx/, http://groups.inf.ed.ac.uk/bx/

(2013–2016)
35. Varró, D.: Model transformation by example. In: MoDELS 2006. LNCS, vol. 4199,

pp. 410–424. Springer (2006)
36. Voigtländer, J., Hu, Z., Matsuda, K., Wang, M.: Enhancing semantic bidirection-

alization via shape bidirectionalizer plug-ins. JFP 23(5), 515–551 (2013)

