
Studia Logica (2013) 101: 783–825
DOI: 10.1007/s11225-013-9498-z © Springer Science+Business Media Dordrecht 2013

M.A.Martins
A.Madeira

L. S. Barbosa

A Coalgebraic Perspective
on Logical Interpretations

Abstract. In Computer Science stepwise refinement of algebraic specifications is a

well-known formal methodology for rigorous program development. This paper illustrates

how techniques from Algebraic Logic, in particular that of interpretation, understood as a

multifunction that preserves and reflects logical consequence, capture a number of relevant

transformations in the context of software design, reuse, and adaptation, difficult to deal

with in classical approaches. Examples include data encapsulation and the decomposition

of operations into atomic transactions. But if interpretations open such a new research

avenue in program refinement, (conceptual) tools are needed to reason about them. In

this line, the paper’s main contribution is a study of the correspondence between logical

interpretations and morphisms of a particular kind of coalgebras. This opens way to

the use of coalgebraic constructions, such as simulation and bisimulation, in the study of

interpretations between (abstract) logics.

Keywords: Abstract logic, Interpretation, Coalgebra, Program refinement.

1. Introduction and overview

1.1. Motivation and objectives

Defining translation maps to interrelate logics and to connect their proper-
ties, has been common practice since the beginning of last century. These
translations were investigated as part of an ambitious programme addressing
tools to handle the multiplicity of logics.

Several intuitive notions of translation are scattered in the literature.
Many logicians tailored the notion, for their own purposes, to relate specific
logics and to obtain specific results. In general, though, a translation is re-
garded as a map between the sets of formulas of different logics such that the
image of a theorem is still a theorem. They were used at first to understand
the relationship between classical and constructive logics. Soon, however,
their scope of applications broadened. The well-known Gödel translation of
classical logic into intuitionistic logic has inspired disperse works on compar-
ing different logics by means of translations. Illustrative examples include

Special Issue: Abstract Algebraic Logic
Edited by Josep Maria Font and Ramon Jansana

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55627025?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

784 M.A. Martins, A. Madeira, L. S. Barbosa

the works of Kolmogorov [22], Glivenko [18] and Gentzen [19] involving clas-
sical, intuitionistic and modal logics.

To the best of our knowledge, the first known general definition for
the concept of translation between logical systems is due to Prawitz and
Malmnäs [41]. More recently, Wójcicki [50] presented a systematic study
of translations between logics, focussing on inter-relations between senten-
tial logics. And the quest goes on (cf. [35, 9, 10]). At the turn of the
century, Silva, D‘Ottaviano and Sette [46] proposed a general definition of
translations between logics as maps preserving consequence relations. Then
Feitosa and D’Ottaviano studied intensively the subclass of translations that
preserve and reflect consequence relations, coining the name conservative
translations [15].

The notion of translation proposed in the present paper generalizes con-
servative translations by allowing maps to be multifunctions but still pre-
serving and reflecting consequence. Such a general notion has been used in
Abstract Algebraic Logic, under the name of interpretation, in the study of
equivalent algebraic semantics [6]. The latter intends to generalize the du-
ality between classic propositional logic and the class of Boolean algebras to
other logics. This generalization is captured by the notion of algebraizable
logic. A logic L = 〈Σ,�〉 is said to be algebraizable whenever there exists
a class K of algebras such that the equational consequence relation |=K is
equivalent to �. Such an equivalence was originally defined by means of
mutually inverse interpretations τ and ρ commuting with arbitrary substi-
tutions. Since then, this link between logic and universal algebra has been
successfully explored. In particular, for an algebraizable logic L, logical prop-
erties of L can be related to algebraic properties of its equivalent algebraic
semantics. This kind of results are often called as bridge theorems, of which
many examples exist. A well-known one states that an algebraizable logic
has the Craig’s interpolation property if and only if the class of the algebraic
reducts of its reduced matrix models has the amalgamation property [11].

Our interest in logical interpretations was boosted by their suitability
to capture difficult problems in quite a different setting, that of Computer
Science, as explained below.

Actually, in Computer Science, translations between logics (used as pro-
gram specifications) are usually witnessed by signature morphisms. Briefly,
a signature morphism is a map between sorts and a family of functions be-
tween the sets of operation symbols, one for each operation symbol type (or
arity), respecting the sort translation. It extends to formulas in a natural
way and, consequently, provides a handy way to relate specifications. It is
easy to see, by the Satisfaction Lemma, that a signature morphism always

A Coalgebraic Perspective on Logical Interpretations 785

preserves consequence; but, in general, does not reflect it. Hence, it is ap-
propriate to consider translations between logics as conservative signature
morphisms, i.e., signature morphisms that preserve and reflect consequence.
Sometimes, it is even worth considering a more general notion of signature
morphism mapping an operation symbol to a derived operation symbol in
the target signature.

In a recent series of papers [29, 30] we introduced an alternative approach
to refinement of specifications in which signature morphisms are replaced
by logic interpretations. Introducing logic interpretations proved effective
in capturing a number of transformations difficult to deal with in classical
terms. Such is the case, for example, of transformations associated to data
encapsulation and to the decomposition of operations into atomic transac-
tions. The use of logic interpretations may also be relevant in the context of
new, emerging computing paradigms which entail the need for more flexible
approaches to what is taken as a valid transformation of specifications (see,
for example, [4]).

1.2. Overview

If interpretations look promising for the line of research we described, which
seeks applications to program refinement, (conceptual) tools are needed to
reason about them. Such is the purpose of the present paper.

More precisely we set a correspondence between logical interpretations
and morphisms of a particular kind of coalgebras, so that usual coalgebraic
constructions, such as simulations and bisimulations, can be used to explore
interpretations between (abstract) logics. On intuitive grounds, the idea
seems promising: coalgebra morphisms do indeed preserve and reflect the
structure of the underlying coalgebra, just as interpretations preserve and
reflect logical consequence.

The programme itself is not new: connections between the theory of
consequence operators, as defined in [50], and coalgebra were first introduced
in [37]. Our contribution extends this work from strict logical morphisms
to interpretations, which, as multifunctions, are much more flexible, yet less
straightforward to deal with.

After a brief review of multifunctions and coalgebras in section 2, sec-
tion 3 introduces logical interpretations and studies some of their properties.
Section 4 shows how interpretations can be regarded as coalgebra morphisms
for a specific endofunctor in the category of families of sets and exemplifies
some advantages one may take from such a relationship. Applications to pro-
gram refinement are discussed in section 5. Section 6 concludes and enumer-
ates a few topics for future research.

786 M.A. Martins, A. Madeira, L. S. Barbosa

2. Preliminaries

Since the purpose of the present paper is to frame logical interpretations as
morphisms of a specific class of coalgebras, it seems appropriate to briefly in-
troduce, in this section, the basic underlying constructions: multifunctions
and coalgebra morphisms. We start this background section, however, by
revisiting the notion of a binary relation, which subsumes both and whose
calculus provides an agile tool for proofs. A number of results on multifunc-
tions, required later in the paper, are proved here.

Relations. Let R :A −→ B denote a binary relation on sets A (source) and
B (target). We write aRb to mean that the pair 〈a, b〉 is in R. The underly-
ing partial order on relations with the same source and target sets is written
R ⊆ S, meaning that S is either more defined or less deterministic than R.
Relations can be combined by three basic operators: composition (R·S), con-
verse (R◦) and meet (R∩S). Meet corresponds to set-theoretical intersection
and composition is defined as usual: for R :A −→ B, S :B −→ C, a(S ·R)c
holds whenever there exists some mediating b ∈ B such that aRb ∧ bSc.
Alternative notation R;S, expressing composition diagramatically, is often
used in the literature on binary relations (e.g., [17, 25]). R◦ is the relation
such that aR◦b iff bRa holds.

The calculus of binary relations was introduced in 1860 by Augustus
de Morgan and was further developed in the second half of the nineteenth-
century by Charles Sanders Peirce and Ernst Schröder. In 1940, Alfred
Tarski proposed an elegant axiomatization of the calculus [48] which led to
the creation of relation algebras and shaped the subject as we know it today
[24, 40]. Since the 1960s, relations have been used in a categorical setting
[17] and applied to various areas of computer science [5]. Such a setting
not only paves the way to generalization, but also helps in structuring the
calculus as detailed below.

The category Rel of sets and relations is the archetypal example of an
allegory [17]: composition and the identity relation idA, for every set A,
provide the categorical structure; converse and composition are monotonic
with respect to ⊆; meet verifies the universal property1:

T ⊆ R ∩ S ⇔ (T ⊆ R) ∧ (T ⊆ S) (1)

1All the laws introduced in the paper hold for arguments of suitable, compatible types,
though type information is left implicit whenever it can be inferred from the context.

A Coalgebraic Perspective on Logical Interpretations 787

and, finally, the following laws hold for converse

(R◦)◦ = R (2)

(S ·R)◦ = R◦ · S◦ (3)

(S ·R) ∩ T = S · (R ∩ (S◦ · T)) (4)

Additional structure makes Rel a rich mathematical universe for specifica-
tions. A first observation is that its hom-sets, i.e., the collections of relations
with the same source and target, form a bounded distributive lattice with
set-theoretical union ∪ as join and � = A × B as the largest relation of
type A → B. Its dual ⊥, the smallest such relation, is of course the empty
relation. Join satisfies a universal property dual to (1):

R ∪ S ⊆ T ⇔ (R ⊆ T) ∧ (S ⊆ T) (5)

and distributes over composition and meet:

(R ∪ S) · T = R · T ∪ S · T (6)

Q ∩ (R ∪ S) = (Q ∩R) ∪ (Q ∪ S) (7)

A relation R :A −→ B is a function if it is both simple (or functional)
i.e., R · R◦ ⊆ idB, and entire (or total), i.e., idA ⊆ R◦ · R. In the sequel
functions will be denoted by lowercase letters. Juxtaposition will be used
for function application, writing f a = b to mean 〈a, b〉 ∈ f . The interplay
of functions and relations is a rich part of the binary relation calculus. In
particular, functions can be shunted from one side of an inequation to the
other:

f ·R ⊆ S ⇔ R ⊆ f◦ · S (8)

R · f◦ ⊆ S ⇔ R ⊆ S · f (9)

We prove (8) as an illustration of the calculus:

f ·R ⊆ S

⇒ { monotonicity of composition }

f◦ · f ·R ⊆ f◦ · S
⇒ { f entire and monotonicity }

R ⊆ f◦ · S
⇒ { monotonicity of composition }

f ·R ⊆ f · f◦ · S
⇒ { f simple and monotonicity }

f ·R ⊆ S

788 M.A. Martins, A. Madeira, L. S. Barbosa

Relations with a common target, say R :A −→ C and S :B −→ C, can
be divided yelding (R/S) : A −→ B which verifies the following universal
property

T ⊆ (R/S) ⇔ S · T ⊆ R (10)

Equivalence (10) defines R/S as the greatest relation whose composition
with S is at most R. Going pointwise, condition S · T ⊆ R corresponds to
predicate

∀a∈A,c∈C . (∃b∈B . aT b ∧ bSc) ⇒ aRc (11)

Fixing points a and b and choosing the greatest T such that (11) holds,
entails the usual pointwise definition of relational division: a(R/S)b iff
∀c∈C . bSc ⇒ aRc. Similarly a dual division operator can be defined for re-
lations with a common source. Both are particularly useful in abstracting,
i.e., converting to relational form, formulas involving universal quantifiers.
The following property will be required later:

(R · f)/S = (R/S) · f (12)

which can be proved by indirect equality as follows

X ⊆ (R · f)/S
⇔ { division universal property (10) }

S ·X ⊆ R · f
⇔ { shunting (9) }

S ·X · f◦ ⊆ R

⇔ { division universal property (10) }

X · f◦ ⊆ R/S

⇔ { shunting (9) }

X ⊆ (R/S) · f

Multifunctions. Multifunctions, as suggested by the symbol used in this
paper for their declaration, m : A

�

B, are set-valued functions, i.e., m :
A −→ PB, where PB is the power set of B. Given two multifunctions
m :A

�

B and n :B

�

C, their composition is defined as follows:

n •m =
⋃

·Pn ·m (13)

A Coalgebraic Perspective on Logical Interpretations 789

which is depicted in Set, the usual category of sets and functions, as follows

A
m �� PB

Pn �� P(PC)

⋃
�� PC

As the definition of their composition may suggest, multifunctions are the
arrows of the Kleisli category for the power set monad [21]. Recall that,
for each set A, multiplication for this monad is distributed set union, i.e.,
multifunction

⋃
A : P(PA)

�

A, whereas unit, ηA :A

�

A, assigns to each
a ∈ A the singleton set {a}. Subscripts will be dropped whenever clear
form the context. Both

⋃
and η are natural transformations, i.e., for each

function f :A −→ B,

Pf ·
⋃

=
⋃

·P(Pf) (14)

Pf · η = η · f (15)

and satisfy the usual monad laws:

⋃
·
⋃

=
⋃

·P
⋃

(16)⋃
·η =

⋃
·Pη = id (17)

Composition η ·f , which turns f into a multifunction, will be abbreviated to
ηf along the paper. The following result, for any f :A −→ B and g :B −→ C,
will be used later:

ηg • ηf = η(g · f) (18)

Its proof illustrates the use of the monad laws above:

ηg • ηf
= { definitions of • and ηf ; P is a functor }

⋃
·Pη · Pg · η · f

= { (15) }
⋃

·Pη · η · g · f
= { (17) and definition of ηf }

η(g · f)
Replacing ηf above by an arbitrary multifunction m :B

�

C yields

m • ηf = m · f (19)

790 M.A. Martins, A. Madeira, L. S. Barbosa

because
m • ηf =

⋃
·Pm · η · f =

⋃
·η ·m · f = m · f

A well-known bijective correspondence between such functions and bi-
nary relations leads to another, somehow more basic, characterization of
multifunctions as relations M :A −→ B, defined by aMb iff b ∈ ma. The
bijection is established by the power transpose operator Λ from the category
Rel of sets and binary relations to the category Set of sets and functions.
When applied to a relation M :A −→ B it yields a multifunction ΛM :A

�

B
defined by

(ΛM) a = {b | aMb}

This definition can be restated as a universal property

m = ΛM ⇔ �B · m = M (20)

where �B: PB −→ B is the (converse) membership relation. Again the
subscript in �B will be omitted whenever this does not create ambiguities.
Also note that the (converse) subset relation is obtained by division, as can
be easily checked from the definition of �:

⊇ = � / � (21)

Equivalence (20) establishes Λ and (� ·) as both upper and lower adjoints
of each other. A direct consequence of this fact is that Λ distributes over
union and intersection. Similarly,

R ⊆ S ⇒ Λ(R)
.
⊆ Λ(S) (22)

where the pointwise lifting of a partial order ≤ to functions is represented
by

.
≤, defined as f

.
≤ g ⇔ f ⊆ (≤ · g). Other useful properties are also

derived in one step from (20):

� · ΛR = R (23)

Λ(R · f) = ΛR · f (24)

Λ � = id (25)

Both multiplication and unit of the power set monad, mentioned above, can
be characterized through the power transpose and (converse) membership:

⋃
= Λ(� · �) (26)

η = Λ(id) (27)

A Coalgebraic Perspective on Logical Interpretations 791

And similarly for the Kleisli composition

n •m = Λ(� ·n · �) ·m (28)

because

n •m
= { definition (13) }

⋃
·Pn ·m

= { (26) }

Λ(� · �) · Pn ·m
= { (24) }

Λ(� · � ·Pn) ·m
= { � natural: � ·Pf = f · � }

Λ(� ·n · �) ·m
Equivalence (20) can also be regarded as establishing an isomorphism

of order-enriched categories between Rel and Kl(P). From the former to
the latter the correspondence is established by functor Λ : Rel −→ Kl(P).
Conversely, the inverse functor is defined by the assignment m �→�B ·m.

The existential image functor, E , from the category Rel of binary re-
lations to its sub-category of functions, maps a relation R : A −→ B to a
function ER :PA −→ PB given by

ER = Λ(R · �) (29)

or, put into a pointwise style, ERX = {b | ∃a∈A aRb ∧ a ∈ X}. An
“absorption” result for ER

ER · ΛS = Λ(R · S) (30)

is proven as follows:

ER · ΛS = Λ(R · S)
⇔ { (29) }

Λ(R · �) · ΛS = Λ(R · S)
⇔ { (20) }

792 M.A. Martins, A. Madeira, L. S. Barbosa

� ·Λ(R · �) · ΛS = R · S
⇔ { (23) twice }

R · S = R · S
For functions, E f coincides with Pf , but for a multifunction m, what

is usually called its direct image (and often represented as m[X]) is the
existential image of the corresponding relation (� · m), which here and in
what follows we denote by M , i.e.,

m∗X = EM X = {b | ∃a∈A b ∈ ma ∧ a ∈ X} =
⋃

·PmX

which the reader may recognize, through notation m∗, as the Kleisli arrow
for the powerset monad [42].

The inverse image of a function f is simply E f◦, where f◦ is the converse
of f regarded as a binary relation. For multifunctions, however, EM◦ Y =
{a | ma ∩ Y �= ∅}, whereas the usual definition is m−1 Y = {a | ma ⊆ Y },
i.e.,

m−1 = Λ(m◦· ⊇) (31)

For m :A

�

B, m∗ :PA −→ PB and m−1 :PB −→ PA compose and their
composition satisfies

id
.
⊆ m−1 ·m∗ and m∗ ·m−1

.
⊆ id

which corresponds to the similar general result id
.
⊆ ER◦·ER and ER·ER◦ .

⊆
id, for an arbitrary relation R. A calculational proof of the second inequality
follows:

m∗ ·m−1

= { definition of m∗ and m−1 }

EM · Λ(m◦· ⊇)

= { (30) }

Λ(M ·m◦· ⊇)

= { definition of M }

Λ(� ·m ·m◦· ⊇)
.
⊆ { as a function m satisfies m ·m◦ ⊆ id and (22) }

Λ(� · ⊇)

= { (� · ⊇) = � and (25) }
id

A Coalgebraic Perspective on Logical Interpretations 793

Unfolding the definition of inverse image of a multifunction yields

mx ⊆ Y ⇔ x ∈ m−1X (32)

which lifts to
m∗X ⊆ Y ⇔ X ⊆ m−1 Y (33)

Other properties of m∗ and m−1 will be required later in the paper. The
universal property of ∩ yields for free m∗ ·∩ .

⊆ ∩ · (m∗ ×m∗) and, similarly,
for m−1. Actually,

m∗ (X ∩ Y) ⊆ m∗X ∩ m∗ Y

⇔ { (1) }

m∗ (X ∩ Y) ⊆ m∗X ∧ m∗ (X ∩ Y) ⊆ m∗ Y

⇐ { m∗ is monotonic }
X ∩ Y ⊆ X ∧ X ∩ Y ⊆ Y

For m−1, however, equivalence (20) gives the reverse inclusion: yielding,
in pointwise style

m−1 (Y ∩ Z) = m−1 Y ∩m−1 Z (34)

The pointfree proof is as follows:

m−1 · ∩ = ∩ · (m−1 ×m−1)

⇔ { definition of m−1 }

Λ(m◦· ⊇) · ∩ = ∩ · (Λ(m◦· ⊇)× Λ(m◦· ⊇))

⇔ { (24) }

Λ(m◦· ⊇ ·∩) = ∩ · (Λ(m◦· ⊇)× Λ(m◦· ⊇))

⇔ { (20) }

m◦· ⊇ ·∩ = � · ∩ ·(Λ(m◦· ⊇)× Λ(m◦· ⊇)

⇔ { laws: � · ∪ = Δ◦ · (�× �), where � :=�,⊇, for Δx = 〈x, x〉 }

m◦ ·Δ◦ · (⊇ × ⊇) = Δ◦ · (� × �) · (Λ(m◦· ⊇)× Λ(m◦· ⊇))

⇔ { × is a functor and Δ a natural transformation }

Δ◦ · (m◦ ×m◦) · (⊇ × ⊇) = Δ◦ · (� ·Λ(m◦· ⊇ × � ·Λ(m◦· ⊇))

⇔ { × is a functor and (23) }

Δ◦ · (m◦ ×m◦) · (⊇ × ⊇) = Δ◦ · ((m◦· ⊇)× (m◦· ⊇))

794 M.A. Martins, A. Madeira, L. S. Barbosa

The auxiliary result � · ∪ = Δ◦ · (� × �), where � :=�,⊇, is easy to verify.
For example, the case � = � holds because

〈C1, C2〉 (Δ◦· � × �)x
= { definition of the diagonal Δx = 〈x, x〉 and composition }

〈C1, C2〉 (� × �) 〈x, x〉 ∧ 〈x, x〉Δ◦ x

= { simplifying }
C1 � x ∧ C2 � x

= { intersection }
C1 ∩ C2 � x

= { relational composition }

〈C1, C2〉 (� · ∩)x
These results extend, of course, to families of sets over a universe U :

m−1 (
⋂
i∈I

Fi) =
⋂
i∈I

m−1 Fi (35)

m∗ (
⋂
i∈I

Fi) ⊆
⋂
i∈I

m∗ Fi (36)

The following two lemmas characterize the direct and inverse image of a
Kleisli composition, respectively. They will be required later to establish a
category of interpretations.

Lemma 2.1. Consider multifunctions m :A

�

B and n :B

�

C. Then,

(n •m)∗ = n∗ · m∗ (37)

Proof.

(n •m)∗

= { definition of • }

(
⋃

·Pn ·m)∗

= { definition of direct image of a multifunction }
⋃

·P
⋃

· PPn · Pm

= { ⋃
is a natural transformation }

A Coalgebraic Perspective on Logical Interpretations 795

⋃
·Pn ·

⋃
·Pm

= { definition of direct image }

n∗ ·m∗

Lemma 2.2. Consider multifunctions m :A

�

B and n :B

�

C. Then,

(n •m)−1 = m−1 · n−1 (38)

Proof. The first step relies on (20):

h = (n •m)−1

⇔ { definition of m−1 (31) and (21) }

h = Λ((n •m)◦ · (� / �))
⇔ { (20) }

� · h = (n •m)◦ · (� / �)

We shall now prove, by indirect equality, that � · h = m◦ · (n◦ · (� / �))/ �):

X ⊆ � · h
⇔ { computed above }

X ⊆ (n •m)◦ · (� / �)
⇔ { shunting (8) }

(n •m) ·X ⊆ (� / �)
⇔ { universal property of division (10) }

� · (n •m) ·X ⊆ �
⇔ { transpose cancelation (23) over (28) }

� ·n · � ·m ·X ⊆ �
⇔ { universal property of division (10) }

n · � ·m ·X ⊆ (� / �)
⇔ { shunting (8) }

� · m ·X ⊆ n◦ · (� / �)
⇔ { universal property of division (10) }

m ·X ⊆ (n◦ · (� / �))/ �

796 M.A. Martins, A. Madeira, L. S. Barbosa

⇔ { shunting (8) }

X ⊆ m◦ · (n◦ · (� / �))/ �
Finally, we go back to functions, by applying the power transpose, and
conclude:

� ·h = m◦ · (n◦ · (� / �))/ �
⇔ { (20) }

h = Λ(m◦ · (n◦ · (� / �))/ �)
⇔ { (23) }

h = Λ(m◦ · (� ·Λ((n◦ · (� / �))/ �)))
⇔ { (12) }

h = Λ(m◦ · (� / �) · Λ(n◦ · (� / �)))
⇔ { (24) }

h = Λ(m◦ · (� / �)) · Λ(n◦ · (� / �))
⇔ { ⊇= (� / �) }

h = Λ(m◦· ⊇) · Λ(n◦· ⊇)

⇔ { definition of m−1 (31) }

h = m−1 · n−1

Coalgebras. A coalgebra for an endofunctor F in Set, often referred to
as a F-coalgebra, is a map p : U −→ F U , which may be thought of as a
transition structure of shape F on the set U . This shape acts as a type for
the possible ways U can be observed and modified on computing p. It is also
used to derive an equivalence relation (and the associated universal domain
of behaviours) capturing indistinguishability by observation, which, for spe-
cific instances of F , boils down to the notion of bisimilarity in transition
systems [38] as used in computing and modal logic. Technically coalgebras
are dual structures to algebras, F aggregating a signature of observers and,
as a consequence, coinduction replacing induction as a proof principle. The
increasing popularity of coalgebra theory [2, 43] in Computer Science comes
exactly from its suitability to provide a generic framework to specify and
reason about systems’ behaviour.

A morphism between two F-coalgebras 〈U, p〉 and 〈V, q〉 is a map h be-
tween the carriers U and V such that diagram (a) in Fig. 1 commutes, i.e.,
q · h = F h · p.

A Coalgebraic Perspective on Logical Interpretations 797

U
p ��

h
��

F U

F h
��

V
q �� F V

U

p

��

R

ρ

��

π1�� π2 �� V

q

��
F U F RF π1

��
F π2

�� F V

(a) (b)

Figure 1. (a) morphism; (b) bisimulation

Given a subset U ′ of the carrier U of a coalgebra 〈U, p〉 and a map
p′ :U ′ −→ F U ′ such that the inclusion i :U ′ ↪→ U is a coalgebra morphism
from 〈U ′, p′〉 to 〈U, p〉, 〈U ′, p′〉 is a subcoalgebra of 〈U, p〉.

A relation on the carriers U and V is a bisimulation for F if it can be
extended to a coalgebra ρ such that projections π1 and π2 lift to morphisms,
as expressed by the commutativity of diagram (b) in Fig. 1. An alternative
definition, often more convenient in proofs, characterizes a bisimulation as
a relation R such that

uR v ⇒ (p u) F̂R (q v) (39)

where F̂R denotes the lifting of R through F [20]. By eliminating variables
in (39) and applying the shunting rule (8), (39) becomes

q ·R ⊆ F̂R · p (40)

A basic result in coalgebra is that any morphism, regarded as a binary
relation, is a bisimulation.

3. Logical interpretations and their properties

3.1. Setting the scene

Abstract logics are pairs A = 〈A,CA〉, where A is a set and CA a closure
operator on A. Such an elementary characterization is enough for our pur-
poses. Although it will be adopted for most of what follows, all constructions
and results lift smoothly to a more structured, “realistic” setting, where log-
ics are considered over algebras with non empty signatures. It provides an
elementary formalization of the concept of a logic as a consequence relation
�A captured by CA: for {x} ∪X ⊆ A, X �A x⇔ x ∈ CAX.

A closure operator C :PA −→ PA is defined by

X ⊆ C Y ⇔ C X ⊆ C Y (41)

798 M.A. Martins, A. Madeira, L. S. Barbosa

or, equivalently, by properties, (i) X ⊆ C X; (ii) X ⊆ Y ⇒ C X ⊆ C Y
and (iii) C (C X) = C X. Over the same set A, closure operators are in
one-to-one correspondence with closure systems, i.e., families of subsets of
A closed under arbitrary intersections (including

⋂
∅ = A). This abstracts

the well-known fact of a logic being defined by its theories. We have then
another representation of A = 〈A,CA〉 as 〈A, TA〉, for TA a closure system.
The relevant bijection belongs to the folklore: the closed sets of CA give rise
to TA, whereas the intersection of the subset of TA containing X defines CA
on X. Formally,

CA �→ TA := {X ⊆ A |CAX = X}
TA �→ CAX :=

⋂
{T ∈ TA |X ⊆ T}.

The following, also well-known result shows how A is captured in a dual way
by CA or TA,

Lemma 3.1. Given two abstract logics A = 〈A,CA〉 and A′ = 〈A,C ′
A〉 and

the corresponding closure systems TA and T ′
A over A,

CA
.
⊆ C ′

A ⇔ T ′
A ⊆ TA (42)

Proof. From left to right, let X ∈ T ′
A. By hypothesis CAX ⊆ C ′

AX = X,
which, as CA is a closure operator, yields CAX = X. For the opposite
direction, it is enough to notice that for allX ⊆ A, X ⊆ C ′

AX and, therefore,
CAX ⊆ CA (C ′

AX) = C ′
AX.

A morphism h :〈A,CA〉 −→ 〈B,CB〉 between abstract logics is a function
from A to B preserving the consequence relation associated with the closure
operator CA, i.e., x ∈ CAX ⇒ hx ∈ CB (PhX). If this relation is also
reflected back, i.e.,

x ∈ CAX ⇔ hx ∈ CB (PhX) (43)

h is called a strict morphism and plays a main role in relating logics. Note
that (43) is equivalent to

CA = h−1 · CB · Ph (44)

Strict morphisms admit yet another characterization in terms of closure
systems.

Lemma 3.2. Let A = 〈A,CA〉 and B = 〈B,CB〉 be two abstract logics. If
h :A −→ B is a strict epimorphism then

TA = {h−1 Y | Y ∈ TB} (45)

A Coalgebraic Perspective on Logical Interpretations 799

Proof. We want to show that, for any Y ⊆ B, Y ∈ TB iff h−1 Y ∈ TA, i.e.,
by definition of TA, TB, CA(h−1 Y) = h−1 Y iff CB Y = Y . Thus,

CA(h
−1 Y) = h−1 Y

⇔ { (44) }

(h−1 · CB · Ph · h−1)Y = h−1 Y

⇔ { h is an epimorphism }

h−1(CB Y) = h−1 Y

⇔ { h is an epimorphism and Leibniz rule }
CB Y = Y

Note that h−1(CB Y) = h−1 Y is implied by CB Y = Y . On the other
hand it implies (Ph · h−1 · CB)Y = Ph(h−1 Y) which is equivalent to
CB Y = Y whenever h is an epimorphism,

3.2. Interpretations

As mentioned in the Introduction, the notion of logical translation we have
been studying as a formal tool for program refinement [29] generalizes con-
servative translations to multifunctions which still preserve and reflect con-
sequence. Formally,

Definition 3.1 (Interpretation). Let A = 〈A,CA〉 and B = 〈B,CB〉 be two
abstract logics. A multifunction m : A

�

B is an interpretation from A to
B, if for any {x} ∪X ⊆ A,

x ∈ CAX ⇔ mx ⊆ CB (m∗X) (46)

Clearly, by (32), definition (46) is equivalent to

CA = m−1 · CB ·m∗ (47)

A multifunction m which preserves, but does not reflect, logical conse-
quence will be called a translation in the sequel. Formally, m is a translation
if

x ∈ CAX ⇒ mx ⊆ CB (m∗X) (48)

or, alternatively, if CA
.
⊆ m−1 · CB ·m∗.

Abstract logics and interpretations form a category LIntp with composi-
tion and unity arrows inherited from the Kleisli category for the powerset
monad.

800 M.A. Martins, A. Madeira, L. S. Barbosa

Lemma 3.3. LIntp is a category.

Proof. Let A = 〈A,CA〉, B = 〈B,CB〉 and C = 〈C,CC〉 be abstract logics.
Clearly, for any A, the identity arrow η :A

�

A in Kl(P) is an interpreta-
tion from A to itself. Thus, it is enough to show that equivalence (46) is
preserved by Kleisli composition, i.e., composing interpretations yields an
interpretation. Let m :A

�

B and n :B

�

C be interpretations from A to B
and from B to C, respectively. Then,

(n •m)−1 · CC · (n •m)∗

= { lemmas 2.1 and 2.2 }

m−1 · n−1 · CC · n∗ ·m∗

= { n is an interpretation }

m−1 · CB ·m∗

= { m is an interpretation }
CA

Some particular classes of multifunctions play an important role in the
sequel. Thus,

Definition 3.2. A multifunction m : A

�

B, relating abstract logics A =
〈A,CA〉 and B = 〈B,CB〉, is closed if it maps closed sets into closed sets,

i.e., X = CAX⇒m∗X = (CB ·m∗)X. It is continuous if m∗ ·CA
.
⊆ CB ·m∗.

Finally, it is functional whenever ma is a singleton for all a ∈ A.

Note that a continuous multifunction is a translation as defined in (48),
because

m∗(CAX) ⊆ CB(m
∗X)

⇔ { (33) }

CAX ⊆ m−1(CB(m
∗X))

⇔ { translating to predicates }

x ∈ CAX ⇒ x ∈ m−1(CB(m
∗X))

⇔ { (32) }

x ∈ CAX ⇒ mx ⊆ CB(m
∗X)

Lemma 3.4. Abstract logics with closed and continuous interpretations form
a subcategory of LIntp.

A Coalgebraic Perspective on Logical Interpretations 801

Proof. Let A = 〈A,CA〉, B = 〈B,CB〉 and C = 〈C,CC〉 be abstract log-
ics. Lemma 2.1 is all we need to prove that closedness (and continuity) is
preserved through Kleisli composition. Suppose X = CAX. Then

X = CAX

⇒ { m closed }

m∗X = CB(m
∗X)

⇒ { n closed }

(n∗ ·m∗)X = CC((n
∗ ·m∗)X)

⇒ { (37) from lemma 2.1 }

(n •m)X = CC((n •m)X)

The proof for continuity is similar.

Lemma 3.5. Let A = 〈A,CA〉 and B = 〈B,CB〉 be two abstract logics and
m :A

�

B a functional and injective multifunction. Then, if m is closed and
continuous wrt A and B then m is an interpretation from A to B.

Proof. Inclusion m∗(CAX) ⊆ CB(m∗X), entails x ∈ CAX ⇒ mx ⊆
CB(m∗X) since x ∈ CA implies mx ⊆ m∗ (CAX). Consider now a x ∈
A such mx ∈ CB(m∗X) and suppose CB(m∗X) = m∗CAX. Hence,
mx ⊆ m∗ (CAX) and, because m is functional, there is a y ∈ CAX such
mx = my. Thus, by injectivity of m, it follows that x = y and, therefore,
mx ⊆ CB m∗X ⇒ x ∈ CAX.

Lemma 3.6. Let A = 〈A,CA〉 and B = 〈B,CB〉 be two abstract logics and
m : A

�

B a closed and continuous multifunction wrt A and B. Then m
is an interpretation from A into B iff for any closed set X wrt A, X =
(m−1 · CB ·m∗)X.

Proof. Suppose that for any closed set X wrt A, X = m−1CB(m∗X).
Then,

CAX

= { CAX is closed }

(m−1 · CB ·m∗ · CA)X

= { m is closed and continuous }

(m−1 · CB · CB ·m∗)X

802 M.A. Martins, A. Madeira, L. S. Barbosa

= { CB is a closure operation }

(m−1 · CB ·m∗)X

We close this sub-section with a result which plays an important role in
section 4 to relate interpretations and coalgebra morphisms.

Lemma 3.7. Let A = 〈A,CA〉 and B = 〈B,CB〉 be two abstract logics and
m :A

�

B an interpretation. Then, TA = {m−1 T | T ∈ TB}.

Proof. Let T ∈ TA. Since m is an interpretation, by Lemma 3.1 T =
CA T = (m−1 · CB ·m∗)T . Since (CB ·m∗)T ∈ TB, T ∈ {m−1 T | T ∈ TB}.

For the reverse implication, supposeX = m−1 T for some T ∈ TB. On the
one hand CA(m−1 T) = (m−1 ·CB ·m∗ ·m−1)T ⊆ m−1 T . The last inclusion
holds since (m∗ ·m−1)T ⊆ T , which implies (CB ·m∗ ·m−1)T ⊆ CB T . Thus,
(CA ·m−1)T = m−1 T , since m−1 T ⊆ (CA ·m−1)T always. Therefore, X
is closed and consequently X ∈ TA.

3.3. Interpretations and congruences

This sub-section generalizes to interpretations results obtained by H. A.
Feitosa in [14, 15] on conservative translations. In particular, we show that
there exists an interpretation between two abstract logics iff there exists an
interpretation between its associated quotient logics induced by the Frege
relation. Our starting point is the following definition,

Definition 3.3. Given an abstract logic A = 〈A,CA〉 and a multifunc-
tion m :A

�

B, the abstract logic co-induced by m and A in B is Am,B =
〈B,Cm,B〉, where Cm,B is the closure operator defined for any Y ⊆ B by
Y ∈ Tm,B if m−1 Y ∈ TA (Tm,B denoting, as usual, the set of closed sets of
Cm,B, its closure system).

Dually, given an abstract logic B = 〈B,CB〉 and a multifunction m :
A

�

B the abstract logic induced by m and B in A is the abstract logic
BA,m = 〈A,CA,m〉, where CA,m satisfies, for any X ⊆ A, X ∈ TA,m if
X = m−1 Y for some Y ∈ TB. Whenever clear from the context we will
write Cm rather than Cm,B or CA,m and similarly for Tm,B or TA,m.

Note that both Am,B and BA,m are indeed abstract logics. To prove this
it is enough to show that Tm,B and TA,m are closed under intersections. For
Tm,B, let {Yi}i∈I be a family of sets of sets in Tm,B. Then m−1 Yi ∈ TA for
each i ∈ I. Clearly, by (35)

m−1 (
⋂
i∈I

Yi) ∈ TA ⇔ (
⋂
i∈I

m−1 Yi) ∈ TA (49)

A Coalgebraic Perspective on Logical Interpretations 803

which holds because TA is a closure system. Therefore Tm,B is also a closure
system. A similar proof establishes TA,m is a closure system as well.

To discuss the relationship between quotients and interpretations, let us
recall some basic notation. Let θ be an equivalence relation on a set A.
As usual, θ-equivalence classes are defined as [x]θ = {y | x θ y}, a notation
which extends to sets X ⊆ A as [X]θ = {[x]θ | x ∈ X}. A particular case of
the latter is the quotient set Aθ = {[x]θ | x ∈ A}. The map eθ : A → Aθ,
defined by eθ(a) = [a]θ, is called the canonical map. In the sequel this will
be trivially embedded in LIntp as ηeθ :A

�

Aθ given by ηeθ = η ·eθ, according
to a convention fixed in section 2.

Consider now an abstract logic A = 〈A,CA〉 and an equivalence relation
≡ on A. The abstract logic co-induced by ηe≡ will be denoted by A≡. This
is characterized in the following lemma.

Lemma 3.8. Let A = 〈A,CA〉 be an abstract logic, ≡ an equivalence on A
and e≡ the corresponding canonical map. Let also A≡ = 〈A≡, Cηe≡〉 be the
logic co-induced by ηe≡ :A

�
A≡ and A in A≡. Then,

Tηe≡ = {[T]≡ | T ∈ TA}

Proof. Let B ∈ Tηe≡ . Then B = (ηe≡)∗ ((ηe≡)−1B) = [(ηe≡)−1B]≡ and
(ηe≡)−1B ∈ TA. Conversely, let B ∈ TA. Then (ηe≡)−1B≡ ∈ TA and, by
definition of Cηe≡ , B≡ ∈ Tηe≡ .

Definition 3.4 (Frege relation). Given an abstract logic A = 〈A,CA〉, the
Frege relation on A is defined as

∼A = {〈a, a′〉 ∈ A×A|CA {a} = CA {a′}}.

Clearly ∼A is an equivalence relation (whenever clear from the context the
subscript will be dropped).

Corollary 3.5. Given an abstract logic A = 〈A,CA〉 and its Frege relation
∼, the logic co-induced by A and ηe∼ in A∼ is A∼ = 〈A∼, {[T]∼ | T ∈ TA}〉.

Lemma 3.9. Let A = 〈A,CA〉 and B = 〈B,CB〉 be two abstract logics and
m a translation between them. Then, for any x, y ∈ A,

CA {x} = CA {y} ⇒ CB mx = CB my

Proof. Suppose CA {x} = CA {y}. Since CA is a closure operator, x ∈
CA {y}. Hence, mx ⊆ CB my and, moreover, CB my = CB (CB my). There-
fore CB mx ⊆ CB my, again by definition of a closure operator. The proof
of reverse inclusion is similar.

804 M.A. Martins, A. Madeira, L. S. Barbosa

Lemma 3.10. Given an abstract logic A = 〈A,CA〉 and an equivalence rela-
tion ≡ on A, ηe≡ : A

�

A≡ is a translation from A to A≡.

Proof. Immediate since Cηe≡ is the weakest consequence that makes ηe≡
a translation.

We can now introduce two main results, theorems 3.6 and 3.8.

Theorem 3.6. For any abstract logic A = 〈A,CA〉, ηe∼ : A

�

A∼ is an
interpretation from A to A∼.

Proof. By lemma 3.10, ηe∼, for the Frege relation ∼, is a translation.
Now suppose [x]∼ ∈ CA∼ ([X]∼]). Suppose also that for any y ∈ [x]∼,
y �∈ Cηe∼ X, i.e., there is at least a T ∈ TA such X ⊆ T and y �∈ T . Then,
[y]∼ �∈ [T]∼ and [X]∼ ⊆ [T]∼. However, this is an absurd since [x]∼ = [y]∼,
and [x]∼ ∈ Cηe∼ ([X]∼]) which implies that [y]∼ = [x]∼ ∈ [T]∼. Therefore,
there is y ∈ [x]∼ such that y ∈ CAX. Since CA {x} = CA {y}, it follows
that x ∈ CAX.

Definition 3.7. A multifunction m : A

�

A is compatible with a binary
relation R if R ⊆ m◦ · PR ·m, i.e.,

aRa′ ⇒ ma (PR)ma′

where X (PR) Y ⇔ ∀x∈X,y∈Y xRy.

Lemma 3.11. Let A = 〈A,CA〉 and B = 〈B,CB〉 be two abstract logics and
m :A

�

B a translation between them. If m is compatible with a relation ≡,
then there is a unique m� : A≡

�

B making the following diagram in LIntp
commute.

A
m ��

ηe≡
��

B

A≡
m�

����������

i.e., m� • ηe≡ = m. Moreover, m� is a translation from A≡ to B.

Proof. Since m is compatible with ≡ we can define the multifunction m� :
A≡

�

B by m� ([x]≡) = mx. Therefore (m� • ηe≡)x = m� ([x]≡) = mx.
Hence the diagram commutes.

For the uniqueness of m�, let g :A≡

�

B be such that g • ηe≡ = m. Since
e≡ is surjective e≡ · e−1

≡ = idA≡ . Then, by (18), ηe≡ • ηe−1
≡ = ηidA≡ = η.

A Coalgebraic Perspective on Logical Interpretations 805

Therefore, unfolding the relevant definitions and resorting to (19), yields

g

= { e≡ is surjective and (18) }

g • (ηe≡ • ηe−1
≡)

= { • associative and m = g • ηe≡ }

m • ηe−1
≡

= { m = m� • ηe≡ }

(m� • ηe≡) • ηe−1
≡

= { • associative, e≡ is surjective and (18) }

m�

Finally, to prove that m� is a translation, suppose [x]≡ ∈ CA≡ ([X]≡).
Then, there is a y ∈ [x]≡ such that y ∈ CAX and, since m is translation,
my ⊆ CB m∗X. Thus,

m�([x]≡) = m�([y]≡) = (m� • ηe≡) y = my ⊆ CB m∗X = CB m�([x]≡)

Therefore m� is a translation.

Theorem 3.8. Let A = 〈A,CA〉 and B = 〈B,CB〉 be two abstract logics.
Then, there exists an interpretation m :A

�

B iff there exists an interpreta-
tion m� :A∼A

�

B∼B .

Proof. Suppose m is an interpretation. By Theorem 3.6, ηe∼B is also an
interpretation and so is ηe∼B•m. By Lemma 3.9, ηe∼B•m is compatible with
∼A and, by Lemma 3.11, there exists a unique translation m� :A∼A

�

B∼A
that making the following diagram in LIntp commute.

A
ηe∼A ��

m

��

A∼A

m�

��
B ηe∼B

�� B∼B

Since ηe∼B •m is an interpretation, and ηe∼B •m = m� • ηe∼A , we conclude
that m� • ηe∼A is also an interpretation.

Suppose, now, that m� is not an interpretation. Since, by Lemma 3.9, m�

is a translation, there exists {y} ∪ Y ⊆ A∼A such that m� y ⊆ C∼B (m�∗ Y)

806 M.A. Martins, A. Madeira, L. S. Barbosa

and y �∈ C∼A (Y) (notice that, to simplify notation, Cηe∼Z is represented by

C∼Z for any Z). Suppose that m� y ⊆ C∼B(m
�∗ Y). Since e∼A is surjective,

there exists {x} ∪X ⊆ A such that e∼A x = y and P(e∼A)X = Y . Hence,
(m�•ηe∼A)x ⊆ C∼B((m

�∗•ηe∗∼A)X) = C∼B((m
�•ηe∼A)

∗X). Sincem�•ηe∼A
is an interpretation, x ∈ C∼A X and so ηe∼A x ⊆ C∼A (ηe∼A X), i.e., y ∈
CA Y , which is absurd.

To prove the reverse implication, suppose that m� is an interpretation.
Let m := ηe−1

∼B •m� • ηe∼A . Then ηe∼B •m = ηe∼B • ηe−1
∼B •m� • ηe∼A ⇔

ηe∼B • m = m� • ηe∼A . Hence, since m� • ηe∼A is an interpretation, so is
ηe∼B •m. Then,

x ∈ CA(X)

⇔ { ηe∼B •m is an interpretation }

(ηe∼B •m)x ⊆ CB∼ (ηe∼B •m)X

⇔ { Theorem 3.6 }

mx ⊆ CB(m
∗X)

Therefore m is an interpretation.

4. Interpretations as coalgebra morphisms

4.1. The problem

As mentioned in the Introduction, the motivation for the present paper
was a theorem by A. Palmigiano [37] establishing that an abstract logic
A = 〈A, TA〉 could be seen as a coalgebra for the contravariant functor
T :Set −→ Set which maps a set A to the set of closure systems over A and,
contravariantly, each function f :A −→ B to

T f : T B → T A
S �→ {f−1X | X ∈ S}

Furthermore, it is proved that strict logical morphisms correspond to mor-
phisms connecting such coalgebras. In detail, coalgebra ξ associated to A
maps each a ∈ A to the subset of TA whose elements contain a. This is
well-known to form a closure system as well, i.e.,

A

ξ
��

a�

��
T A ξ(a) = {X ∈ TA | a ∈ X}

A Coalgebraic Perspective on Logical Interpretations 807

Reference [37] proceeds by characterizing the class of coalgebras coming
from an abstract logic and proves, as a main result, that they form a covari-
ety. Our quest in the present paper takes, however, a different path: logical
interpretations, like strict morphisms, preserve and reflect a consequence re-
lation. Therefore, one may ask whether a similar characterization is possible
for interpretations. Framing this as a research question,

in which setting (i.e., category) and under which conditions, can
interpretations be regarded as coalgebra morphisms, mimicking the
similar correspondence between coalgebra morphisms for T in Set
and strict morphisms between abstract logics?

Briefly, the answer is as follows: an interpretation m, represented by its
direct image m∗, corresponds to a coalgebra morphism for an endofunctor T ,
defined below, over a category Fam of sets of sets. On the other hand, mor-
phisms between T -coalgebras correspond to interpretations provided they
are the direct image of continuous, closed multifunctions. Therefore, for the
“only-if” part, the result is weaker than the corresponding one for strict
morphisms. The remaining of this section works out the details.

Definition 4.1. The category Fam of sets of sets has as objects A = PA,
for each set A and, as arrows, functions between them.

The counterpart to functor T , described above, is an endofunctor T :
Fam −→ Fam which maps each A to PA. Functor T acts contravariantly
on maps: to f :A −→ B it assigns

T f : T B → T A

S �→ {(f · η)−1 T | T ∈ S}

Note that for f = m∗, f · η = m because

m∗ · η
= { m∗ definition }

⋃
·Pm · η

= { η natural (15) }
⋃

·η ·m
= { (17) }

m

808 M.A. Martins, A. Madeira, L. S. Barbosa

Now, an abstract logic A = 〈A, TA〉 is represented by a T -coalgebra 〈A, ξA〉
given by

A

��

X�

ξA
��

T A ξAX = {T ∈ TA | X ⊆ T}
The following theorems establish our main results on characterizing in-

terpretations as coalgebra morphisms.

Theorem 4.2. Let A = 〈A, TA〉 and B = 〈B, TB〉 be two abstract logics
and 〈A, ξA〉, 〈B, ξB〉 the corresponding coalgebras. Hence, if m : A

�

B is
an interpretation, then its direct image m∗ is a coalgebra morphism, i.e., it
makes the following diagram to commute:

A
m∗

��

ξA
��

B

ξB
��

T A T B
T m∗

��

Proof.

T m∗ · ξB ·m∗ (X)

= { unfolding the definitions }

{m−1 T | T ∈ {T ′ ∈ TB | m∗X ⊆ T ′}}
= { simplifying }

{m−1 T | T ∈ TB ∧m∗X ⊆ T}
= { (33): X ⊆ m−1 T ⇔ m∗X ⊆ T }

{m−1 T | T ∈ TB ∧X ⊆ m−1 T}
= { Theorem 3.7 }

{T ′ | T ′ ∈ TA ∧X ⊆ T ′}
= { definition of ξA(X) }

ξA(X)

The converse result does not hold in general. However,

Theorem 4.3. Let A = 〈A, TA〉 and B = 〈B, TB〉 be two abstract logics and
m :A

�

B a closed and continuous multifunction. Then, m is an interpreta-
tion if TA = {m−1 T | T ∈ TB}.

A Coalgebraic Perspective on Logical Interpretations 809

Proof. Let X be a theory of A, i.e., a closed set of CA. Then, by hy-
pothesis, X = m−1 T , for some T ∈ TB. Hence, m∗X ⊆ T . Thus,
(CB · m∗)X ⊆ CB T = T . Therefore, (m−1 · CB · m∗)X ⊆ m−1 T = X.
The other inclusion holds since m is continuous.

Therefore, a closed and continuous multifunction m such that m∗ is a
coalgebra morphism is an interpretation.

4.2. Reasoning in the coalgebra

What can be achieved through this coalgebraic “rephrasing” of interpreta-
tions? As it is always the case in Mathematics, whenever a different setting
is proved to capture a concept, the potential gain is on new reasoning tools.
The coalgebraic perspective offers bisimulation. Given two abstract logics
A = 〈A, TA〉 and B = 〈B, TB〉 and a (closed, continuous) multifunction m
between them, the coalgebraic representation provides an alternative way
to prove that m is an interpretation. In this case two methods are avail-
able: either one proves the direct image of m is a morphism from 〈A, ξA〉 to
〈B, ξB〉, or that its graph is a bisimulation. Using definition (39), it is easy
to give an explicit representation of how a bisimulation looks like for functor
T . Because T is contravariant, a relation R :A −→ B is a bisimulation iff

ξB ·R ⊆ T̂ R
◦
· ξA, i.e.,

(X,Y) ∈ R ⇒ (ξB Y, ξAX) ∈ T̂ R

where

T̂ R = {〈{T ∈ TB | Y ⊆ T}, {T ∈ TA | X ⊆ T}〉 | 〈X,Y 〉 ∈ R}

In several cases, bisimulations can be tested (semi-)automatically (for ex-
ample in Circ [23]).

Another useful tool in coalgebraic analysis is the notion of an invariant.
Invariants can be characterized as coreflexive bisimulations [3]. Coreflexives
(i.e., relations R :A −→ A such that R ⊆ id) are typical representations of
predicates over the coalgebra carrier: to each such predicate ϕ over a set S
corresponds a coreflexive Φ such that 〈s, s′〉 ∈ Φ⇔ ϕs ∧ s′ = s. By (39), an
invariant over a T -coalgebra ξA satisfies

〈X,X〉 ∈ Φ ⇒ (ξAX, ξAX) ∈ T̂ Φ (50)

i.e., ϕ is kept along the coalgebra structure, or equivalently, “inside the
logic” modeled by ξA. Clearly, (50) boils down to

ϕX ⇒ ∀T∈TA X ⊆ T ⇒ ϕT

810 M.A. Martins, A. Madeira, L. S. Barbosa

Properties of interpretations can also be studied in terms of the corre-
sponding coalgebra morphisms. For example, m∗ being an epi coalgebra
morphism is a sufficient condition for m itself to be surjective. Such reflec-
tion of epimorphisms is due to the fact that the forgetful functor from the
category of T -coalgebras to Fam creates limits. Surjective interpretations
verify

m∗ · CA = CB ·m∗

because

CA = m−1 · CB ·m∗

⇒ { Leibniz }

m∗ · CA = m∗ ·m−1 · CB ·m∗

⇔ { m surjective (m∗ ·m−1 = id) }

m∗ · CA = CB ·m∗

which entails a strong form of equivalence between the underlying abstract
logics: for m :A

�

B, and A = 〈A, TA〉, B = 〈B, TB〉 not only consequence
in A is preserved and reflected along m, as witnessed by the definition of
interpretation itself (46), but, additionally, the same happens to consequence
in B along m−1:

Z ⊆ CB Y ⇔ m−1 Z ⊆ CA (m−1 Y) (51)

When m boils down to a function, and therefore to a strict morphism be-
tween A and B, this is called in [16] a bilogical morphism. The same qualifier
may be used for these interpretations as well.

Some properties of the logic have direct counterparts in the coalgebra.
For example, a fragment of an abstract logic A = 〈A,CA〉 is defined as
another logic A = 〈A′, CA′〉 such that A′ ⊆ A and for all X ∪ {a} ⊆ A′,
a ∈ CAX ⇔ a ∈ CA′ X. Coalgebraically, this corresponds to a subcoalgebra
construction, as follows:

Lemma 4.1. If A′ = 〈A′, CA′〉 is a fragment of A = 〈A,CA〉, then ξA′ is a
T -subcoalgebra of ξA.

Proof. The closed sets of A′ are the intersections of A′ with the closed sets

A Coalgebraic Perspective on Logical Interpretations 811

of A. Then, if i is the inclusion A′ ⊆ A, we have to show that T i·ξA ·i = ξA′ .

(T i · ξA · i) a
= { T and ξA definitions }

{i−1X | X ∈ {Y ∈ TA | a ∈ Y ∧ a ∈ A′}}
= { simplifying }

{{a′ ∈ A′ | i a′ ∈ Y } | Y ∈ TA ∧ a ∈ Y ∧ a ∈ A′}
= { i embedding and definition of ∩ }

{Y ∩A′ | a ∈ Y ∧ Y ∈ TA}
= { definition of TA′ }

{Z ∈ TA′ | a ∈ Z}

Notice that, as i is a function, it is easier to reason directly in T than
using, equivalently, η · i in T . In any case, coalgebra ξA′ , being induced by
an inclusion which lifts to a coalgebra morphism, is unique, since functor
T preserves monomorphisms. And so is, as expected, the corresponding
fragment.

These examples briefly illustrate how reasoning in the coalgebraic side
and transporting results back to the logical one may be a useful tool in
studying consequence operators. In the next section this is further explored
in the context of a specific domain of application, that of program refinement.
In particular it is shown how some specific refinement situations require
weaker notions of morphism between coalgebras, developed in [33], to be
brought into the picture.

5. Application to program refinement

5.1. Refinement by interpretation

The design of complex software systems at ever-increasing levels of reliability
is a main concern in Software Engineering. Since the 1980’s research on alge-
braic specification methods [47, 32, 49], which resort to concepts and tools
of logic (to build specifications) and universal algebra (for their models),
has evolved to address such a challenge. Central to such methods, namely
to Casl [36], their landmark realization, is the process of stepwise refine-
ment [44, 34, 45, 26] of specifications through which a complex design is
produced by incrementally adding details and reducing under-specification

812 M.A. Martins, A. Madeira, L. S. Barbosa

with respect to an initial, high-level one. This is done step-by-step until the
specification becomes a precise description of a concrete model.

In this setting a specification consists of a pair SP = 〈ΣSP , [[SP]]〉 where
ΣSP is a signature and [[SP]] a class of ΣSP -algebras considered to be admis-
sible realizations of the envisaged system. The following definition recalls
the basic concepts.

Definition 5.1. A signature Σ is a pair (S,Ω), where S is a set (of sort
names) and Ω is a (S∗×S)-sorted set (of operation names). For a signature
Σ a Σ-algebra A consists of an S-sorted set A = (As)s∈S , where for all s ∈ S
As �= ∅ and, for any f ∈ Ωs1...sn,s, a function fA : As1 × · · · ×Asn → As. We
denote by Alg(Σ) the class of all Σ-algebras.
Finally, a signature morphism from Σ = (S,Ω) to Σ′ = (S′,Ω′) is a pair
σ = (σsort, σop), where σsort : S → S′ and σop is a (S∗ × S)-family of
functions respecting the sorts of operation names in Ω, that is, σop = (σω,s :
Ωω,s → Ω′

σ∗
sort(ω),σsort(s)

)ω∈S∗,s∈S (where for ω = s1 . . . sn ∈ S∗, σ∗
sort(ω) =

σsort(s1) . . . σsort(sn)).

Given a set ΦSP of requirements, a specification can be represented by
〈ΣSP , [[SP]]〉 where [[SP]] = {A ∈ Alg(ΣSP)|A |= ΦSP }. Implementations
are derived through stepwise refinement leading to a chain

SP0 � SP1 � SP2 � · · ·� SPn−1 � SPn,

where, for all 1 ≤ i ≤ n, SPi−1 � SPi means [[SPi]] ⊆ [[SPi−1]]. Each
step of this process is called an elementary refinement step. Note that the
elementary refinement relation � is transitive since ΣSP = ΣSP ′ = ΣSP ′′

and [[SP ′′]] ⊆ [[SP ′]] ⊆ [[SP]].
In practice refinement steps SP ′ � SP are taken up to signature mor-

phisms, in order to deal with renaming, adding or grouping together dif-
ferent signature components. Therefore, the elementary refinement step is
annotated with the relevant signature morphism, say σ, and SP ′ σ� SP is
interpreted as [[SP ′]] �σ ⊆ [[SP]], where [[SP ′]] �σ= {A �σ |A ∈ [[SP]]} and
A �σ denotes a reduct of the algebra A along σ.

Not all transformations relevant to software design, reuse, and adaptation
are captured by signature morphisms. As mentioned in the Introduction, a
more flexible refinement theory can be developed by resorting to logical
interpretations instead as witnesses of refinement steps. Formally, we say
that

Definition 5.2. Let SP and SP ′ be specifications, represented by abstract
logics. We say that SP ′ is a refinement by interpretation of SP , in sym-

A Coalgebraic Perspective on Logical Interpretations 813

bols SP ⇁ SP ′, if there is an interpretation τ followed by an elementary
refinement σ connecting SP to SP ′, i.e,

SP
τ�

SP ′′ σ� SP ′ (52)

Characterizing logic interpretations as coalgebra morphisms, as discussed
in the previous sections, provides the working software engineering with new
tools to reason about refinement. Actually, such was the main motivation
for this research: interpretations, captured by coalgebra morphisms, can be
established by coalgebraic means.

In this section the methodology of refinement by interpretation, devel-
oped in [29, 30], is revisited in the coalgebraic setting. As before, we regard
specifications as abstract logics A = 〈A,CA〉 (or their coalgebraic counter-
parts 〈A, ξA〉), which is enough to convey the basic ideas. The introduction
of further algebraic structure, although not particularly demanding, is sub-
ject of current research.

Although, as discussed earlier in the paper, logic interpretations both
preserve and reflect the consequence relation, the basic requirement placed
on a refinement relation, besides being a pre-order to allow stepwise con-
struction, is preservation of properties. Taking specifications as abstract
logics A = 〈A,CA〉 and A′ = 〈A′, CA′〉, an elementary refinement of A by
A′, denoted by A� A′, corresponds to the requirement that

a ∈ CAX ⇒ a ∈ CA′ X (53)

This can be expressed simply as CA
.
⊆ CA′ or, in terms of the corresponding

closure systems, as TA′ ⊆ TA.
Expressing A � A′ as the subcoalgebra morphism induced by the rele-

vant inclusion i :A ↪→ A′, i.e., by the commutativity of the diagram below
(for T defined in section 4.1), is too strong: it makes i a strict morphism,
replacing implication by equivalence in (53).

A � � i ��

ξA
��

A′

ξA′
��

T A T A′T i��

Actually, it enforces (T i · ξA′ · i) a = {i−1X | X ∈ ξA′ a} = {i−1X | X ∈
TA′ ∧ a ∈ X} to coincide with ξA a = {X ∈ TA | a ∈ X}, and, therefore,
TA = TA′ .

Preservation of consequence, however, only requires TA′ ⊆ TA. Coalge-
braically, this means ξA and ξA′ should be related simply by a simulation.
This is captured by the following weaker notion of coalgebra morphism:

814 M.A. Martins, A. Madeira, L. S. Barbosa

Definition 5.3. Let F be a contravariant functor on Set, 〈A,α〉 and 〈B, β〉
be two F-coalgebras and � a pre-order on B preserved by F . A forward
morphism between 〈A,α〉 and 〈B, β〉 with respect to � is a map h :A −→ B

such that Fh · β · h .
� α, as depicted in the diagram below.

A

�α
��

h �� B

β
��

FA FB
Fh

��

Reference [33] introduced forward morphisms of coalgebras for regular
functors and proved them to preserve the underlying transition relation. For
our purposes here it is enough to note that

Lemma 5.1. Let A = 〈A,CA〉 and A′ = 〈A′, CA′〉 two abstract logics and
〈A, ξA〉 and 〈A, ξA′〉 their corresponding T -coalgebras. A′ is an elementary
refinement of A iff there is an inclusion i :A ↪→ A′ which is a T -coalgebra
forward morphism wrt ⊆ between A and A′.

Proof. Immediate, by unfolding the definitions.

Moreover, forward morphisms compose giving rise to a category of abstract
logics and elementary refinements:

Theorem 5.4. The class of T -coalgebras induced by abstract logics and T -
forward morphisms wrt ⊆ form a category.

Proof. It is enough to show that the composition of T -forward morphisms
wrt ⊆ is still a T -forward morphism, as identities and composition are in-
herited from the category of T -coalgebras. Let A = 〈A, TA〉, B = 〈B, TB〉
and C = 〈C, TC〉 be abstract logics and 〈A, ξA〉, 〈B, ξB〉 and 〈C, ξC〉 the cor-
responding T -coalgebras. Consider the situation depicted in the following
diagram, where h and g are forward morphisms.

A

⊇

h ��

ξA
��

B

⊇

g ��

ξB
��

C

ξC
��

T A T B
T h�� T C

T g��

A Coalgebraic Perspective on Logical Interpretations 815

Thus,

T (h · g) · ξC · (g · h)
= { T is a functor and associativity of · }

T h · ((T g · ξC · g) · h)
.
⊆ { g is a forward morphism and s

.
⊆ r ⇒ (t · s) .

⊆ (t · r) }
T h · (ξB · h)

.
⊆ { h is a forward morphism and s

.
⊆ r ⇒ (t · s) .

⊆ (t · r) }
ξA

Let us now turn to the general case where refinement is witnessed by
an interpretation. To frame the refinement situation in definition 5.2 as
a coalgebra morphism, one needs first to represent elementary refinements
in Fam. Let A = 〈A,CA〉 and A′ = 〈A′, CA′〉 be two abstract logics and
〈A, ξA〉 and 〈A, ξA′〉 their corresponding T -coalgebras. This is achieved by
embedding the diagram

A

⊇

� � i ��

ξA
��

A′

ξA′
��

T A T A′
T i

��

in Fam, yielding

A

⊇

� � i∗ ��

ξA ��

A
′

ξA′
��

T A T A
′

T i∗
��

where A = PA and defining ξA such that η · ξA = ξA · η. Hence, (52)
translates to the commutativity of the following diagram in Fam:

A
τ∗ ��

ξA ��

C

⊇

� � σ∗
��

ξC ��

B

ξB��
T A T C

T τ∗
�� T B

T σ∗
��

(54)

816 M.A. Martins, A. Madeira, L. S. Barbosa

This establishes σ∗ · τ∗ as a forward morphism in Fam. The left square com-
mutes strictly whereas commutativity of the right one is up to set inclusion
⊆. Note that refinement steps represented in diagram (54) can be composed
along a refinement chain capturing the whole implementation process of a
specification SP , as depicted below.

A
τ∗0 ��

ξA
��

C0
� � σ∗

0 ��

ξC0 ��
⊇

C1
τ∗1 ��

ξC1��

. . . �
� σ∗

n−1 �� Cn
τ∗n ��

ξCn−1
��

Cn

ξCn
��

⊇

� � σ∗
n �� B

ξB
��

T A T C0
T τ∗0

�� T C0
T σ∗

0

�� . . .
T τ∗1
�� T Cn−1

T σ∗
n−1

�� T Cn
T τ∗n
�� T B

T σ∗
n

��

5.2. Examples

This section illustrates through a few examples the notion of refinement by
interpretation which motivates the work reported in this paper. As men-
tioned above, this constitutes a new application of Algebraic Logic tech-
niques to a Computer Science problem, which opens new perspectives to
its understanding. The following examples emphasize such a potential, cap-
turing refinement situations which are difficult to express, or simply not
expressible, through signature morphisms.

To discuss examples of concrete interpretations requires specializing the
abstract framework introduced in the previous sections to capture logical
systems over many sorted signatures. Moreover, often software specification
entails the need for different kinds of logical systems, even of different dimen-
sions. These concerns were addressed in our previous work [29, 30] through
the notion of a k-formula for a nonzero natural number k. A k-formula of
sort S over Σ is just a sequence of k Σ-formulas, all of the same sort S.

Hidden k-logics (see [31] for their systematic study), and even, some-
times, just k-logics (see [30]) provide an interesting setting for specifications.
Hidden k-logics are a natural generalization of k-deductive systems that en-
compass equational and inequational logics. They are defined in the usual
Tarski way as a consequence relation satisfying reflexivity, cut, weakening
and structural conditions. Hidden k-logics generalize k-deductive systems
in two directions. On the one hand, sorts are taken into account in order
to specify programs which involve different data types. The second direc-
tion, on the other hand, is computationally motivated by the need to hide in
an internal ‘memory’ all pertinent information about the abstract machine
underlying the program’s execution. This is often required when specifying
object-oriented programs [1]. It places, however, a special challenge to the

A Coalgebraic Perspective on Logical Interpretations 817

equational methods typically used in specifications of abstract data types.
This can be addressed by augmenting the standard equality predicate by be-
havioral equivalence, which, in this Abstract Algebraic Logic approach, can
be achieved by means of properties of the well known Leibniz congruence [31].

An important class of such logics admits a presentation by axioms and
inference rules in the Hilbert style. It is well known how axioms and inference
rules induce a hidden logic, hence in the following examples we will just give
the associated sets of axioms and inference rules of the logic.

As in the abstract case considered in the previous sections, where an
interpretation is a multifunction to relate specifications axiomatized in dif-
ferent logical systems (i.e., different k-logics) one has often to resort to mul-
tifunctions between the respective sets of formulas. This leads us to multi-
functions, called (k-l)-translations in our previous work, that map k-formulas
to sets of l-formulas.

Our first two examples deal with equational specifications. The third
shows how the approach can be generalized to deductive systems of arbitrary
dimension.

Example 5.1. Consider the following two specifications:

spec SP1
sorts

s
ops

f : s → s
axioms

x ≈ x

inference rules

x ≈ x ′

x ′ ≈ x

x ≈ x ′, x ′ ≈ x ′′

x ≈ x ′′

x ≈ x ′

f (x) ≈ f (x ′)

spec SP2
sorts

s
ops

ok :→ s
f : s → s
test : s × s → s

axioms

test(x , x) ≈ ok
inference rules

test(x , x ′) ≈ ok

test(x ′, x) ≈ ok

test(x , x ′) ≈ ok , test(x ′, x ′′) ≈ ok

test(x , x ′′) ≈ ok

test(x , x ′) ≈ ok

test(f (x), f (x ′)) ≈ ok

It is not difficult to see, by induction on the structure of proofs, that trans-
lation

818 M.A. Martins, A. Madeira, L. S. Barbosa

τ : Eq(SP1) → Eq(SP2)
x ≈ x′ �→ test(x, x′) ≈ ok

interprets SP1. Actually, since the axiomatization of SP2 is defined by the
translation of SP1, we have

�SP1 x ≈ x′ iff �SP2 test(x, x
′) ≈ ok.

On the other hand, an inspection of the signatures of both specifications
shows that there exists an unique signature morphism definable between
them: the inclusion ι : Sig(SP1) → Sig(SP2). This morphism induces the
identity translation between formulas which, obviously, does not interpret
SP1 in SP2 .

If this example introduces a very simple refinement that is not, however,
captured by translations induced by signature morphisms, the following one
goes a step further. It illustrates how useful, even if not elementary, design
transformations in algebraic specifications can be captured as refinements by
interpretation. The example, borrowed from a Computer Science context,
focus on one of such transformations in which some operations are decom-
posed or mapped to transactions, i.e., sequences of operations to be executed
atomically.

Example 5.2. Consider the following fragment of a specification of a bank
account management system (BAMS), involving account deposits (operation
deposit), withdrawals (withdraw) and a balance query (bal). Assume INT as
the usual flat specification of integer numbers with arithmetic operations,
and variables s : Sys, i : Ac and n, n′ : Int, where Sys and Ac are the
sorts of bank systems and account identifiers, respectively. The signatures
of the main operations are as follows: deposit : Sys × Ac × Int −→ Sys,
withdraw : Sys×Ac× Int −→ Sys and bal : Sys×Ac −→ Int.

spec BAMS
enrich INT
axioms

bal(deposit(s , i ,n), i) ≈ bal(s, i) + n
bal(withdraw(s , i ,n), i) ≈ max(bal(s, i)− n, 0)
· · ·

Consider, now, an implementation BAMSVAL, where all debit and credit
transactions require a previous validation step. This is achieved through an
operation val : Sys × Ac × Int −→ Int, which given a bank system state,
an account identifier and a value to be added or subtracted to the account’s

A Coalgebraic Perspective on Logical Interpretations 819

balance, verifies if the operation can proceed or not. In the first case it will
return the original amount, in the second 0 as an error value. This will
force an invalid deposit or withdrawal to have no effect (0 will be added or
subtracted to the account’s balance). The axioms for BAMSVAL include,

spec BAMSVAL

enrich INT
axioms

bal(deposit(s , i , val(s , i ,n)), i) ≈ bal(s , i) + val(s, i ,n)
bal(withdraw(s , i , val(s , i ,n)), i) ≈ max(bal(s , i)− val(s , i ,n), 0)
· · ·

The interpretation τ1 :Eq(ΣBAMS)
�
Eq(ΣBAMSVAL

), defined by

τ1(t ≈ t′) =
{
γ ≈ γ′|γ ∈ τ#1 (t) and γ′ ∈ τ#1 (t′)

}
, where

τ#1 (x) = {x} for x ∈ VAR

τ#1 (f(t1, t2, t3)) =
{
f(t′1, t

′
2, val(t

′
1, t

′
2, t

′
3)) |

∧
i=1..3 t′i ∈ τ#1 (ti)

}
for f ∈ {deposit,withdraw}

τ#1 (f(t1, . . . , tn)) =
{
f(t′1, . . . , t

′
n) |

∧
i=1..n t′i ∈ τ#1 (ti)

}
for f /∈ {deposit,withdraw}

witnesses a refinement in which isolated calls to the operations are mapped
to validated transactions.

We close this section with an example capturing a change of logic in a
more general sense.

Example 5.3. A semilattice can be regarded either as an algebra or as a
partially order structure. Such a duality, often useful in specifications, can
be expressed by an interpretation, actually an equivalence between two 2-
logics over the one-sorted signature Σ = {∧} (see [7]). Consider the following
logics, where EQΣ stands for the (free) equational logic over Σ,

spec SLV
enrich EQΣ

axioms
〈p, p ∧ p〉
〈p ∧ q , q ∧ p〉
〈p ∧ (q ∧ r), (p ∧ q) ∧ r〉

and SLP, the specifiable 2-logic defined by the following axioms and inference
rules:

820 M.A. Martins, A. Madeira, L. S. Barbosa

spec SLP
axioms

〈p, p〉
〈p, p ∧ p〉
〈p ∧ q , p〉
〈p ∧ q , q〉

inference rules
〈x , y〉, 〈y , z 〉

〈x , z 〉
〈x0 , y0 〉, 〈x1 , y1 〉
(x0 ∧ x1 , y0 ∧ y1 〉

The schematic translation defined by the multifunction

τ(〈p, q〉) = {〈p, q〉, 〈q, p〉}

witnesses that SLP interprets SLV.

6. Conclusions

Originally defined as a tool for studying equivalent algebraic semantics (see
e.g. [6, 7, 8, 11]), the notion of logical interpretation proved effective in
expressing a number of transformations in program refinement, difficult to
deal with in classical terms. Some of these cases were illustrated by the
examples discussed in section 5. The theory of refinement by interpretation
was further developed in our previous work: first introduced for the popular
equational case [29] and later generalized to deductive systems of arbitrary
dimension in [30]. The latter makes possible, for example, to refine sentential
into equational specifications and the latter into modal ones.

Besides illustrating the role of interpretations in program refinement, this
paper characterized a formal correspondence between these and morphisms
for a particular kind of coalgebras, generalizing [37]. This paves the way
to the use of coalgebraic results and methods (namely bisimulations) in
reasoning about program refinement.

Having introduced here a number of constructions and results to estab-
lish the basis of such a connection, several issues remain open, of which some
are being addressed at present in our research. Among them, we single out
the need for further correspondence results, i.e., how typical notions and re-
sults in coalgebra theory (for example, final and weakly final constructions,

A Coalgebraic Perspective on Logical Interpretations 821

invariants and assertions) are reflected at the logic level. And, conversely,
how structural aspects in the logic, for example finitarity (recall a closure
operator C is finitary if C X =

⋃
{C Y | Y ⊆ X ∧ Y finite}) are captured

and analyzed at the coalgebraic level. Interpolation properties, that can
be defined in terms of theories, are interesting candidates [12]. Lifting the
entire framework to a more structured setting, where logics are considered
over algebras with non empty signature, is part of our current work. This
entails the need for capturing logics as dialgebras [39]: the algebraic com-
ponent models the underlying algebra, while the coalgebraic one expresses
consequence.

As a main conclusion we would like to emphasize that the present paper
contributes to the recent, on-going research effort to apply methods and
results from Abstract Algebraic Logic to Computer Science problems. Other
examples in a similar direction, from our own work, include the semantics of
object-oriented programming through hidden k-logics introduced in [31], and
the theory of hidden k-state machines as a unified model of specifications
expressed in different logical paradigms [27, 28] and in the context of classical
automata theory [13]. We hope this approach to program refinement through
interpretations, and the associated coalgebraic machinery discussed here,
will prove equally fruitful in the near future.

Acknowledgements. The authors acknowledge the financial support by
ERDF - European Regional Development Fund through the COMPETE
Programme (operational programme for competitiveness) and by National
Funds through the FCT - Fundação para a Ciência e a Tecnologia (Por-
tuguese Foundation for Science and Technology) within project FCOMP-01-
0124-FEDER-010047 (project Mondrian), as well as within the Center for
Research & Development in Mathematics and Applications (CIDMA) of
Universidade de Aveiro under the project PEst-C/MAT/UI4106/2011 with
COMPETE number FCOMP-01-0124-FEDER-022690. M. Martins was fur-
ther supported by the project Nociones de Completud, reference FFI2009-

09345 (Spain), and A. Madeira by SFRH/BDE/33650/2009, a PhD grant
jointly supported by FCT and Critical Software S.A., Portugal.

Finally, the authors would like to thank an anonymous referee who care-
fully read a previous version of the paper and made several useful suggestions
to improve the paper.

822 M.A. Martins, A. Madeira, L. S. Barbosa

References

[1] Abadi, M., and L. Cardelli, A Theory of Objects. Springer-Verlag, 1996.

[2] Adamek, J., An introduction to coalgebra. Theory and Applications of Categories

14(8):157–199, 2005.

[3] Barbosa, L. S., J. N. Oliveira, and A. M. Silva, Calculating invariants as core-

flexive bisimulations. In J. Meseguer and G. Rosu, (eds.), Algebraic Methodology

and Software Technology, 12th International Conference, AMAST 2008, Urbana, IL,

USA, July 28-31, 2008, Proceedings Springer Lect. Notes Comp. Sci. (5140), 2008,

pp. 83–99.

[4] Batory, D., J. N. Sarvela, and A. Rauschmayer, Scaling step-wise refinement.

IEEE Trans. in Sofware Engineering 30(6):355–371, 2004.

[5] Bird R., and O. Moor, The Algebra of Programming. Series in Computer Science.

Prentice-Hall International, 1997.

[6] Blok, W., and D. Pigozzi, Algebraizable logics. Memoirs of the American Mathe-

matical Society (396). Amer. Math. Soc., Providence, 1989.

[7] Blok, W., andD. Pigozzi, Abstract algebraic logic and the deduction theorem, 2001.

Available from http://www.math.iastate.edu/dpigozzi/papers/aaldedth.pdf.

[8] Blok, W., and J. Rebagliato, Algebraic semantics for deductive systems. Studia

Logica 74(1-2):153–180, 2003.

[9] Caleiro, C., and R. Gonçalves, Equipollent logical systems. In Logica Universalis,

Birkhäuser, Basel, 2005, pp. 99–111.

[10] Carnielli, W.A., M.E. Coniglio, and I.M. L. D’Ottaviano, New dimensions

on translations between logics. Logica Universalis 3(1):1–18, 2009.

[11] Czelakowski, J., Protoalgebraic Logics. Trends in logic, Studia Logica Library,

Kluwer Academic Publishers, 2001.

[12] Czelakowski, J., and D. Pigozzi, Amalgamation and interpolation in abstract

algebraic logic. In X. Caicedo and C. H. Montenegro, (eds.), Models, Algebras, and

Proofs, Lecture Notes in Pure and Applied Mathematics (vol. 203), 1998, pp. 187–265.

[13] Descalço, L., A. Madeira, and M. A. Martins, Applying abstract algebraic logic

to classic automata theory: an exercise. In F. Ferreira, Guerra H., and E. Mayordomo,

(eds.), Programs, Proofs and Processes; Computability in Europe Cie 2010, 2010,

pp. 146–157.

[14] Feitosa, H. A., Traduções Conservativas. PhD thesis, Universidade Federal de

Campinas, Instituto de Filosofia e Ciências Humanas, 1997.

[15] Feitosa, H. A., and I. M. L. D’Ottaviano, Conservative translations. Ann. Pure

Appl. Logic 108(1-3):205–227, 2001.

[16] Font J.M., and R. Jansana, A general Algebraic Semantics for Sentential Logics ,

2nd edition, volume 7. Lecture Notes in Logic, 2009.

[17] Freyd, P. J., and A. Ščedrov, Categories, Allegories, volume 39 of Mathematical

Library. North-Holland, 1990.

[18] Glivenko, V., Sur quelques points de la logique de M. Brouwer. Bulletins de la

classe des sciences 15(5):183–188, 1929.

A Coalgebraic Perspective on Logical Interpretations 823

[19] Gödel, K., An interpretation of the intuitionistic proposicional calculus (1933). In

S. Feferman et alii, (eds.), Collected works of Kurt Gödel (vol. I), Oxford: Oxford

University Press, 1986, pp. 301–303.

[20] Hermida, C., and B. Jacobs, Structural induction and coinduction in a fibrational

setting. Information and Computation 145:105–121, 1998.

[21] Kock, A., Strong functors and monoidal monads. Archiv für Mathematik 23:113–120,

1972.

[22] Kolmogorov, A. N., On the principle of excluded middle (1925). In J. Hei-Jenoort,

(ed.), From Frege to Gddotödel: a source book in mathematical logic 1879-1931, Cam-

bridge: Harvard University Press, 1977, pp. 414–437.

[23] Lucanu, D., E. Goriac, G. Caltais, and G. Rosu, Circ: A behavioral verification

tool based on circular coinduction. In Algebra and Coalgebra in Computer Science,

Third International Conference, CALCO 2009, Udine, Italy, September 7-10, 2009.

Proceedings, Springer Lect. Notes Comp. Sci. (5728), 2009, pp. 433–442.

[24] Maddux, R. D., The origin of relation algebras in the development and axiomati-

zation of the calculus of relations. Studia Logica 50(3-4):42–455, 1991.

[25] Martin, C. E., S. A. Curtis, and I. Rewitzky, Modelling angelic and demonic

nondeterminism with multirelations. Sci. Comput. Program. 65(2):140–158, 2007.

[26] Martins, M. A., Behavioral institutions and refinements in generalized hidden logics.

Journal of Universal Computer Science 12(8):1020–1049, 2006.

[27] Martins, M. A., Closure properties for the class of behavioral models. Theor.

Comput. Sci. 379(1-2):53–83, 2007.

[28] Martins, M. A., On the behavioral equivalence between k-data structures. The

Computer Journal 51(2):181–191, 2008.

[29] Martins, M. A., A. Madeira, and L. S. Barbosa, Refinement by interpreta-

tion. In Dang Van Hung and P. Krishnan, (eds.), 7th IEEE International Conference

on Software Engineering and Formal Methods (SEFM’09), IEEE Computer Society

Press, 2009, pp. 250–259.

[30] Martins, M. A., A. Madeira, and L. S. Barbosa, Refinement by interpretation

in a general setting. In J. Derrick, E. Boiten, and S. Reeves, (eds.), Proc. Refinement

Workshop 2009, Electr. Notes Theor. Comput. Sci. (256), Elsevier, 2009, pp. 105–121.

[31] Martins, M. A., and D. Pigozzi, Behavioural reasoning for conditional equations.

Math. Struct. Comput. Sci. 17(5):1075–1113, 2007.

[32] Meinke, K., and J. V. Tucker, Universal algebra. In Handbook of logic in computer

science, Vol. 1, volume 1 of Handb. Log. Comput. Sci., Oxford Univ. Press, New York,

1992, pp. 189–411.

[33] Meng, Sun, and L. S. Barbosa, Components as coalgebras: The refinement dimen-

sion. Theor. Comp. Sci. 351:276–294, 2005.

[34] Michel Bidoit, M., and R. Hennicker, Proving behavioral refinements of col-

specifications. In Essays Dedicated to Joseph A. Goguen, 2006, pp. 333–354.

[35] Mossakowski, T., R. Diaconescu, and A. Tarlecki, What is a logic translation?

Logica Universalis 3(1):95–124, 2009.

[36] Mossakowski, T., A. Haxthausen, D. Sannella, and A. Tarlecki, CASL: The

common algebraic specification language: Semantics and proof theory. Computing

and Informatics 22:285–321, 2003.

824 M.A. Martins, A. Madeira, L. S. Barbosa

[37] Palmigiano, A., Abstract logics as dialgebras. Electr. Notes Theor. Comput. Sci.

65(1), 2002.

[38] Park, D., Concurrency and automata on infinite sequences. Springer Lect. Notes

Comp. Sci. (104), 1981, pp. 561–572.

[39] Poll, E., and J. Zwanenburg, From algebras and coalgebras to dialgebras. In

H. Reichel, (ed.), Coalgebraic Methods in Computer Science (CMCS’2001), number 44

in ENTCS. Elsevier, 2001.

[40] Pratt, V., Origins of the calculus of binary relations. In Proc. IEEE Symp. on Logic

in Computer Science, Santa Cruz, CA,USAIEEE, 1992, pp. 248–254.

[41] Prawitz, D., and P.-E. Malmnäs, A survey of some connections between classical,

intuitionistic and minimal logic. In Contributions to Mathematical Logic: Proc. Logic

Colloq. (Hannover 1966), North-Holland, 1968, pp. 215–229.

[42] Robinson, E. P., Variations on algebra: monadicity and generalisations of equational

theories. Formal Aspects of Computing 13:308–326, 2002.

[43] Rutten, J., Universal coalgebra: A theory of systems. Theoretical Computer Science

249(1):3–80, 2000. (Revised version of CWI Techn. Rep. CS-R9652, 1996).

[44] Sannella, D., and A. Tarlecki, Towards Formal Development of Programs from

Algebraic Specifications: Implementations Revisited. Acta Informatica 25(3):233–

281, 1988.

[45] Sannella, D., and A. Tarlecki, Essential concepts of algebraic specification and

program development. Formal Aspects of Computing 9(3):229–269, 1997.

[46] Da Silva, J., I. D’Ottaviano, and A. M. Sette, Translations between logics. In

Models, algebras, and proofs: Selected papers of the X Latin American Symposium on

Mathematical Logic, (Bogotá, 1995), Lect. Notes Pure Appl. Math. (203), 1968, pp.

435–448.

[47] Tarlecki, A., Abstract specification theory: An overwiew. In M. Broy, and M.

Pizka, (eds.), Models, Algebras, and Logics of Engineering Software, NATO Science

Series, Computer and Systems Sciences, VOL 191, IOS Press, 2003, pp. 43–79.

[48] Tarski, A., On the calculus of relations. The Journal of Symbolic Logic 6(3):73–89,

1941.

[49] Wirsing, M., Algebraic specification. In J. van Leeuwen, (ed.), Handbook of Theo-

retical Computer Science (volume B), Elsevier - MIT Press, 1990, pp. 673–788.

[50] Wójcicki, R., Theory of logical caculi. Basic theory of consequence operations. Syn-

these Library, 199. Kluwer Academic Publishers., 1988.

Manuel A. Martins
CIDMA
Dep. Mathematics
Universidade de Aveiro
Aveiro, Portugal
martins@ua.pt

A Coalgebraic Perspective on Logical Interpretations 825

Alexandre Madeira
Critical Software
MAP-i Doctoral Programme
Aveiro, Portugal
madeira@ua.pt

Luis S. Barbosa
HASLab \ INESC TEC
Universidade do Minho
Braga, Portugal
lsb@di.uminho.pt

	A Coalgebraic Perspectiveon Logical Interpretations
	Abstract
	1. Introduction and overview
	1.1. Motivation and objectives
	1.2. Overview

	2. Preliminaries
	3. Logical interpretations and their properties
	3.1. Setting the scene
	3.2. Interpretations
	3.3. Interpretations and congruences

	4. Interpretations as coalgebra morphisms
	4.1. The problem
	4.2. Reasoning in the coalgebra

	5. Application to program refinement
	5.1. Refinement by interpretation
	5.2. Examples

	6. Conclusions
	Acknowledgements
	References

