732 research outputs found

    Spatial enhancer clustering and regulation of enhancer-proximal genes by cohesin

    Get PDF
    In addition to mediating sister chromatid cohesion during the cell cycle, the cohesin complex associates with CTCF and with active gene regulatory elements to form long-range interactions between its binding sites. Genome-wide chromosome conformation capture had shown that cohesin's main role in interphase genome organization is in mediating interactions within architectural chromosome compartments, rather than specifying compartments per se. However, it remains unclear how cohesin-mediated interactions contribute to the regulation of gene expression. We have found that the binding of CTCF and cohesin is highly enriched at enhancers and in particular at enhancer arrays or “super-enhancers” in mouse thymocytes. Using local and global chromosome conformation capture, we demonstrate that enhancer elements associate not just in linear sequence, but also in 3D, and that spatial enhancer clustering is facilitated by cohesin. The conditional deletion of cohesin from noncycling thymocytes preserved enhancer position, H3K27ac, H4K4me1, and enhancer transcription, but weakened interactions between enhancers. Interestingly, ∼50% of deregulated genes reside in the vicinity of enhancer elements, suggesting that cohesin regulates gene expression through spatial clustering of enhancer elements. We propose a model for cohesin-dependent gene regulation in which spatial clustering of enhancer elements acts as a unified mechanism for both enhancer-promoter “connections” and “insulation.

    Target specificity among canonical nuclear poly(A) polymerases in plants modulates organ growth and pathogen response

    Get PDF
    Polyadenylation of pre-mRNAs is critical for efficient nuclear export, stability, and translation of the mature mRNAs, and thus for gene expression. The bulk of pre-mRNAs are processed by canonical nuclear poly(A) polymerase (PAPS). Both vertebrate and higher-plant genomes encode more than one isoform of this enzyme, and these are coexpressed in different tissues. However, in neither case is it known whether the isoforms fulfill different functions or polyadenylate distinct subsets of pre-mRNAs. Here we show that the three canonical nuclear PAPS isoforms in Arabidopsis are functionally specialized owing to their evolutionarily divergent C-terminal domains. A strong loss-of-function mutation in PAPS1 causes a male gametophytic defect, whereas a weak allele leads to reduced leaf growth that results in part from a constitutive pathogen response. By contrast, plants lacking both PAPS2 and PAPS4 function are viable with wild-type leaf growth. Polyadenylation of SMALL AUXIN UP RNA (SAUR) mRNAs depends specifically on PAPS1 function. The resulting reduction in SAUR activity in paps1 mutants contributes to their reduced leaf growth, providing a causal link between polyadenylation of specific pre-mRNAs by a particular PAPS isoform and plant growth. This suggests the existence of an additional layer of regulation in plant and possibly vertebrate gene expression, whereby the relative activities of canonical nuclear PAPS isoforms control de novo synthesized poly(A) tail length and hence expression of specific subsets of mRNAs

    Quality science from quality measurement: The role of measurement type with respect to replication and effect size magnitude in psychological research

    Get PDF
    Copyright: © 2018 Kornbrot et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.The quality of psychological studies is currently a major concern. The Many Labs Project (MLP) and the Open-Science-Collaboration (OSC) have collected key data on replicability and statistical effect sizes. We build on this work by investigating the role played by three measurement types: ratings, proportions and unbounded (measures without conceptual upper limits, e.g. time). Both replicability and effect sizes are dependent on the amount of variability due to extraneous factors. We predicted that the role of such extraneous factors might depend on measurement type, and would be greatest for ratings, intermediate for proportions and least for unbounded. Our results support this conjecture. OSC replication rates for unbounded, 43% and proportion 40% combined are reliably higher than those for ratings at 20% (effect size, w = .20). MLP replication rates for the original studies are: pro- portion = .74, ratings = .40 (effect size w = .33). Original effect sizes (Cohen’s d) are highest for: unbounded OSC cognitive = 1.45, OSC social = .90); next for proportions (OSC cogni- tive = 1.01, OSC social = .84, MLP = .82); and lowest for ratings (OSC social = .64, MLP = .31). These findings are of key importance to scientific methodology and design, even if the reasons for their occurrence are still at the level of conjecture.Peer reviewe

    Robot life: simulation and participation in the study of evolution and social behavior.

    Get PDF
    This paper explores the case of using robots to simulate evolution, in particular the case of Hamilton's Law. The uses of robots raises several questions that this paper seeks to address. The first concerns the role of the robots in biological research: do they simulate something (life, evolution, sociality) or do they participate in something? The second question concerns the physicality of the robots: what difference does embodiment make to the role of the robot in these experiments. Thirdly, how do life, embodiment and social behavior relate in contemporary biology and why is it possible for robots to illuminate this relation? These questions are provoked by a strange similarity that has not been noted before: between the problem of simulation in philosophy of science, and Deleuze's reading of Plato on the relationship of ideas, copies and simulacra

    Zinc Intake and Biochemical Markers of Bone Turnover in Type 1 Diabetes

    Get PDF
    OBJECTIVE—To examine the relationship between Zn nutritive status and biochemical markers of bone turnover in type 1 diabetes

    Entanglement of Imaging and Imagining of Nanotechnology

    Get PDF
    Images, ranging from visualizations of the nanoscale to future visions, abound within and beyond the world of nanotechnology. Rather than the contrast between imaging, i.e. creating images that are understood as offering a view on what is out there, and imagining, i.e. creating images offering impressions of how the nanoscale could look like and images presenting visions of worlds that might be realized, it is the entanglement between imaging and imagining which is the key to understanding what images do. Three main arenas of entanglement of imag(in)ing and the tensions involved are discussed: production practices and use of visualizations of the nanoscale; imag(in)ing the future and the present; and entanglements of nanoscience and art. In these three arenas one sees struggles about which images might stand for nanotechnology, but also some stabilization of the entanglement of imag(in)ing, for example in established rules in the practices of visualizing the nanoscale. Three images have become iconic, through the combination of their wide reception and further circulation. All three, the IBM logo, the Foresight Institute’s Nanogear image, and the so-called Nanolouse, depict actual or imagined technoscientific objects and are thus seen as representing technoscientific achievements – while marking out territory

    Towards Machine Wald

    Get PDF
    The past century has seen a steady increase in the need of estimating and predicting complex systems and making (possibly critical) decisions with limited information. Although computers have made possible the numerical evaluation of sophisticated statistical models, these models are still designed \emph{by humans} because there is currently no known recipe or algorithm for dividing the design of a statistical model into a sequence of arithmetic operations. Indeed enabling computers to \emph{think} as \emph{humans} have the ability to do when faced with uncertainty is challenging in several major ways: (1) Finding optimal statistical models remains to be formulated as a well posed problem when information on the system of interest is incomplete and comes in the form of a complex combination of sample data, partial knowledge of constitutive relations and a limited description of the distribution of input random variables. (2) The space of admissible scenarios along with the space of relevant information, assumptions, and/or beliefs, tend to be infinite dimensional, whereas calculus on a computer is necessarily discrete and finite. With this purpose, this paper explores the foundations of a rigorous framework for the scientific computation of optimal statistical estimators/models and reviews their connections with Decision Theory, Machine Learning, Bayesian Inference, Stochastic Optimization, Robust Optimization, Optimal Uncertainty Quantification and Information Based Complexity.Comment: 37 page

    Control of developmentally primed erythroid genes by combinatorial co-repressor actions

    Get PDF
    How transcription factors (TFs) cooperate within large protein complexes to allow rapid modulation of gene expression during development is still largely unknown. Here we show that the key haematopoietic LIM-domain-binding protein-1 (LDB1) TF complex contains several activator and repressor components that together maintain an erythroid-specific gene expression programme primed for rapid activation until differentiation is induced. A combination of proteomics, functional genomics and in vivo studies presented here identifies known and novel co-repressors, most notably the ETO2 and IRF2BP2 proteins, involved in maintaining this primed state. The ETO2-IRF2BP2 axis, interacting with the NCOR1/SMRT co-repressor complex, suppresses the expression of the vast majority of archetypical erythroid genes and pathways until its decommissioning at the onset of terminal erythroid differentiation. Our experiments demonstrate that multimeric regulatory complexes feature a dynamic interplay between activating and repressing components that determines lineage-specific gene expression and cellular differentiation
    corecore