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Abstract. 

 

In addition to mediating sister chromatid cohesion during the cell cycle, the cohesin 

complex associates with CTCF and with active gene regulatory elements to form long-

range interactions between its binding sites. Genome-wide chromosome conformation 

capture had shown that cohesin's main role in interphase genome organization is in 

mediating interactions within architectural chromosome compartments, rather than 

specifying compartments per se. However, it remained unclear how cohesin-mediated 

interactions contribute to the regulation of gene expression. We have found that the 

binding of CTCF and cohesin is highly enriched at enhancers and in particular at 

enhancer arrays or 'super-enhancers' in mouse thymocytes. Using local and global 

chromosome conformation capture we demonstrate that enhancer elements associate 

not just in linear sequence, but also in 3-D, and that spatial enhancer clustering is 

facilitated by cohesin. The conditional deletion of cohesin from non-cycling thymocytes 

preserved enhancer position, H3K27ac, H4K4me1 and enhancer transcription, but 

weakened interactions between enhancers. Interestingly, ~50% of deregulated genes 

reside in the vicinity of enhancer elements, suggesting that cohesin regulates gene 

expression through spatial clustering of enhancer elements. We propose a model for 

cohesin-dependent gene regulation where spatial clustering of enhancer elements acts 

as a unified mechanism for both, enhancer-promoter 'connections' and 'insulation'. 

 

  



Introduction 

 

Transcriptional regulation requires functional and topological interactions of gene 

regulatory elements, in particular enhancers and promoters. Making appropriate 

connections is a challenging problem, as mammalian genomes contain tens of 

thousands of promoters, and considerably larger numbers of enhancers (Thurman et al., 

2012). One solution to the problem of matching appropriate regulatory elements is to 

compartmentalise the genome, thereby reducing the number of enhancers and 

promoters that are likely to engage with each other. The first - and most obvious - level 

of compartmentalization is the segmentation of the genome into individual 

chromosomes. Beyond this, genome-scale chromosome conformation capture 

approaches have shown that individual interphase chromosomes are organized into 

architectural compartments with an average size of 1-3Mb (Lieberman-Aiden et al., 

2009), which in turn contain topologically associated domains (TADs) sized ~1Mb 

(Sanyal et al., 1012; Nora et al., 2012; Dixon et al., 2012). Compartments and TADs are 

defined by interaction frequencies, and are thought to reduce the probability of 

interactions between gene regulatory elements located in different compartments, while 

facilitating interactions between enhancers and promoters within the same compartment 

or domain (Gibcus and Dekker 2013).  

 

The cohesin protein complex constrains chromosome topology in cycling cells (Nasmyth 

and Haering, 2009) and contributes to long-range interactions in interphase (Hadjur 

2009; Kagey et al., 2010; Seitan 2011; Nativio et al., 2009; Hou et al., 2010; Mishiro et 

al., 2009; Seitan et al., 2013; Merkenschlager and Odom 2013). Recent Hi-C studies 

have shown that cohesin is important primarily for defining interactions within 

chromosomal compartments but not (Seitan et al., 2013), or to a limited extent (Sofueva 

et al., 2013; Zuin et al., 2014), for maintaining chromosome compartmentalization per 

se. Despite continued compartmentalization, cohesin-depleted thymocytes show a 

systematic skewing of gene expression that deregulates ~1000 genes (Seitan et al., 

2013). These data indicate that compartmentalization alone is insufficient for proper 

gene regulation, and that cohesin-mediated interactions within chromosomal 

compartments contribute to the regulation of gene expression. Exactly what these 

interactions are and how they affect gene expression remains incompletely understood. 

Current models focus on cohesin-mediated enhancer-promoter interactions (Kagey et 



al., 2010; Seitan 2011), transcription factor binding (Faure et al., 2012; Yan et al., 2013) 

and cohesin-dependent maintenance of cell type-specific enhancers (Hnisz et al., 2013). 

Here we explore the role of cohesin in enhancer-enhancer interactions and the 

regulation of enhancer-proximal genes. 

 

Results 

 

The regulation of genes near enhancers requires cohesin. 

 

To explore the impact of cohesin on long-range interactions and gene expression we 

used an experimental system where floxed alleles of the gene encoding for the cohesin 

subunit RAD21 are deleted by the developmentally regulated activation of CD4Cre 

transgenes in developing thymocytes (Seitan et al., 2011; Seitan et al., 2013). This 

approach preserves cohesin expression in cycling thymocytes (Seitan et al., 2011), while 

total and chromatin-associated RAD21 in non-cycling Rad21lox/lox CD4Cre CD4+ CD8+ 

small double positive thymocytes  ('thymocytes') were depleted by 80 to 90% both 

globally (as judged by western blotting of chromatin fractions) and locally (as judged by 

ChIP-PCR) (Seitan et al., 2013). To ask how Rad21 deletion affected the chromatin 

association of other cohesin subunits we examined total and chromatin-associated 

SMC1A in Rad21-deleted thymocytes. Western blotting of chromatin fractions showed 

that SMC1A and SMC3 were increased in the soluble (chromatin unbound) and 

decreased in the chromatin bound fraction of Rad21-deleted thymocytes (Supplemental 

Figure S1).  

 

RNA-seq analysis defined 1,153 genes that were differentially expressed between 

control and cohesin-deficient thymocytes (FDR=0.05; Seitan et al., 2013). To understand 

how cohesin impacts on the regulation of gene expression we applied a multinomial 

logistic regression model that integrates gene expression in control and Rad21-deficient 

small CD4+ CD8+ double positive thymocytes (thymocytes), genomic features such as 

gene length and CpG content with Hi-C and ChIP-seq data (Seitan et al., 2013). Among 

a range of variables tested, the genomic distance between genes and enhancers 

emerged as highly predictive (Figure 1A).  

 

 



We used the presence of H3K27ac outside promoter regions to identify potential 

enhancers in thymocytes (~4700, median width ~2kb). Extended arrays of enhancer 

elements that spread on average over 20kb of linear genomic sequence were identified 

as complex enhancers or 'super-enhancers' (Whyte et al., 2013; Parker et al., 2013) 

using a published algorithm (ROSE; Hnisz et al., 2013; Supplemental Figure S1). Of 

1,153 genes that were deregulated in cohesin-depleted thymocytes, 504 (43.7%) were 

positioned near conventional enhancers or super-enhancers  (odds ratio = 2.70, P < 2.2 

x 10-16, Fisher's exact test; 39.4% of 703 upregulated genes and 50.4% of 450 

downregulated genes were associated with enhancers; Figure 1B). This represents a 

considerably greater fraction of deregulated genes than was associated with other 

variables we tested (Seitan et al., 2013) such as location in differentially interacting 

regions (13.5% of deregulated genes, odds ratio = 1.80, P = 1.15 x 10-9), gene 

expression levels (170 or 14.7% of deregulated genes fell into the top two or bottom two 

log expression intervals), or the presence of ultraconserved non-coding elements (62 or 

5.4% of deregulated genes; Seitan et al., 2013).  

 

Compared to the frequency of deregulated gene expression genome-wide (6.78%), 

genes positioned next to - or overlapping – conventional enhancers were deregulated 

significantly more frequently (10%, P = 2.54 x 10-15) and (12%, P = 0.011), respectively 

(Figure 1C). One in five genes positioned within 40kb of super-enhancers were 

deregulated (Figure 1C; 207 of 1035; P < 2.2 x 10-16). Proximity to conventional 

enhancers accounted for the greatest number (349) and percentage (30.3%) of 

deregulated genes (Figure 1B), but proximity to super-enhancers showed the strongest 

enrichment (Figure 1C). The highest frequency of deregulation was found for genes 

positioned within super-enhancers (138 of 493 overlapping genes were deregulated, 

27.99%; P < 2.2 x 10-16) and genes that are nearest neighbors of super-enhancers 

(30.65% or 137 of 447 genes positioned next to super-enhancers were deregulated; P < 

2.2 x 10-16, Figure 1C). These data indicate that cohesin is required for the regulated 

expression of genes near conventional enhancers and super-enhancers in thymocytes, 

and that ~50% of deregulated gene expression events are accounted for by the 

positioning of genes relative to enhancers.  

 

Enhancers are maintained in cohesin-deficient thymocytes 

 



Super-enhancers are characterized by extraordinary enrichment for mediator subunits, 

H3K27ac, and master transcription factors (Whyte et al., 2013). Perturbation studies in 

ES cells suggested that super-enhancers are highly sensitive to the loss not only of cell 

type-specific transcription factors such as POU5F1 and components of the general 

transcription machinery, specifically mediator subunits, but also of cohesin (Hnisz et al., 

2013). We therefore examined H3K27ac as a mark of putative enhancer elements in 

control and cohesin-deficient thymocytes. The Cd8 (Figure 2A) and Ppp1r16b (Figure 

2B) regions illustrate that H3K27ac was very similar in control and in cohesin-deficient 

thymocytes. Genome-wide, the identity of H3K27ac-marked enhancer elements (Shen et 

al., 2012) was well preserved in cohesin-depleted thymocytes (Spearman correlation = 

0.8672; Figure 2C, left). We evaluated H3K27ac of developmental stage-specific 

enhancer elements, identified based on H3K4me2 ChIP-seq data at successive stages 

of thymocyte differentiation (Zhang et al., 2012). We compared putative enhancer 

elements that were already present prior to the CD4+ CD8+ double positive stage - and 

maintained in CD4+ CD8+ double positive thymocytes (gray, Figure 2C, center) - with 

putative enhancer elements that were newly established in CD4+ CD8+ double positive 

thymocytes at or around the time of cohesin depletion (red, Figure 2C, center). H3K27ac 

at both constitutive and newly established developmentally regulated enhancers were 

highly correlated between control and cohesin-deficient thymocytes (Spearman 

correlation = 0.8112). Analysis of super-enhancers showed little impact of cohesin 

depletion on H3K27ac (Spearman correlation = 0.9202). Only 5 of 465 thymocyte super-

enhancers showed a 2-fold or greater difference in H3K27ac, and the median ratio 

between total H3K27ac signal across super-enhancers in cohesin-deficient thymocytes 

over wild type was 1.08 (Figure 2C, right). ChIP-PCR experiments indicated that, in 

addition to H3K27ac, the H3K4me1 enhancer mark was preserved in Rad21-deficient 

thymocytes (Supplemental Figure S3A). We also examined the abundance of enhancer-

associated transcripts as an indicator for the activity of the transcriptional machinery at 

enhancers in control and Rad21-deficient thymocytes and found that the transcription of 

enhancers and super-enhancers was retained in Rad21-deficient thymocytes 

(Supplemental Figure S3B). Hence, enhancer position, H3K27ac, H4K4me1 and 

enhancer transcription are maintained in cohesin-deficient thymocytes.  

 

To address whether changes in the expression of enhancer-associated genes are a 

consequence of minor changes in H3K27ac levels we stratified enhancers and super-



enhancers according to the ratio of H3K27ac in cohesin-deficient thymocytes over wild 

type (top, middle, and lower third) and compared the frequency of deregulated genes 

associated with each group. Genes associated with enhancers and super-enhancers 

with minimal changes in H3K27ac (middle third) were deregulated at similar frequencies 

as genes associated with enhancers or super-enhancers in the top or bottom third 

(Figure 2D). 

 

CTCF and cohesin demarcate and punctuate enhancer landscapes. 

 

As genes near enhancers were preferentially deregulated in cohesin-deficient 

thymocytes we examined the association of cohesin and CTCF with enhancers. 

Enrichment of cohesin (Whyte et al., 2012; Hnisz et al., 2013) – but not CTCF (Hnisz et 

al., 2013) – was previously reported at super-enhancers in ES cells. We found that 

CTCF binding was enriched at conventional enhancers (Figure 3A; 2.48-fold over 

adjacent regions) and at thymocyte super-enhancers (Figure 3B; 1.63-fold over adjacent 

regions). The strongest enrichment of CTCF binding was at the boundaries of super-

enhancers. The majority (64.5%) of thymocyte super-enhancers had CTCF peaks at 

least one of their boundaries (299 of 465; 76 at both ends, 223 at one end; (Figure 3C). 

In addition, CTCF binding sites punctuated the interior of super-enhancers in 

thymocytes. As expected based on the association of cohesin with CTCF (Parelho et al., 

2008; Wendt et al., 2008) and with active regulatory elements (Kagey et al., 2010; 

Schmidt et al., 2010; Faure et al., 2012; Whyte et al., 201; Yan et al., 2013) the cohesin 

subunits RAD21 and SMC1A were also highly enriched at super-enhancers (Figure 3B). 

RAD21 and in particular SMC1A associated not only with discrete CTCF binding sites, 

but in addition spread across super-enhancers (Figure 3B).  

 

Cohesin mediates the spatial clustering of enhancer elements. 

 

Given that enhancers and super-enhancers associate with CTCF and cohesin, and that 

cohesin is known to form interactions between its binding sites (Hadjur 2009; Kagey et 

al., 2010; Seitan 2011; Nativio et al., 2009; Hou et al., 2010; Mishiro et al., 2009; Seitan 

et al., 2013) we asked whether cohesin has a role in the spatial arrangement of 

enhancer elements. For this analysis we focused on the Cd3 super-enhancers, which 

illustrate the typical features described above: the H3K27ac-marked regions are flanked 



by CTCF binding sites and enriched for cohesin binding relative to the surrounding 

regions, and H3K27as was maintained in Rad21-deficient thymocytes (Figure 4A). 

Targeted 3C analysis revealed that interactions between the Cd3 super-enhancers were 

significantly weakened in cohesin-deficient thymocytes (interactions B, C, D in Figure 

4A; interaction A is a proximity ligation control used to demonstrate comparable 

efficiency of 3C experiments). Likewise, interactions between the Cd3 super-enhancers 

and enhancer elements positioned outside the Cd3 super-enhancers were significantly 

weakened in cohesin-deficient thymocytes (interactions F, G, H, I, J in Figure 4B; 

interaction E demonstrates the level of background interactions between the Cd3 super-

enhancer and a downstream genomic fragment without H3K27ac or CTCF binding).  

Taken together, these data show that the Cd3 super-enhancers congregate with each 

other in 3-dimensional nuclear space and closely interact with enhancer elements 

outside the Cd3 super-enhancer region. Importantly, this spatial proximity of enhancer 

elements is mediated at least in part by cohesin, as cohesin depletion results in the 

partial dispersal of enhancer elements. 

 

Structured interaction matrix analysis (SIMA; Lin et al., 2012) of Hi-C data indicated that 

chromatin features including enhancers, RAD21 binding sites and promoters interacted 

more strongly with each other than expected based on a background model, while 

interactions between randomly chosen chromatin regions located within active chromatin 

compartments showed no enrichment over the background model (Figure 4C). With an 

enrichment of 3.5-fold over the background model, interactions within individual super-

enhancers were particularly strong. This indicates that the constituent elements of super-

enhancers are closer to each other in 3-dimensional nuclear space than expected based 

on their distance in the linear genomic sequence. Hence, the constituent elements of 

super-enhancers are not only arrayed in linear sequence, but also congregate to cluster 

spatially. Importantly, spatial clustering within super-enhancers was significantly 

weakened in cohesin-deficient thymocytes (P=1.4x10-4, Figure 4C) and the extent of this 

reduction was comparable to that between RAD21 binding sites (P<10-32, Figure 4C). 

Interactions between conventional enhancers were also reduced by cohesin depletion 

(P<10-21, Figure 4C), while interactions between promoters (TSSs) appeared slightly 

increased, as reported previously (Seitan et al., 2013). SIMA analysis of Hi-C data 

further showed that enhancer-enhancer interactions were reduced in open chromatin 

compartments (P<10-21, Figure 4D). This was the case for compartments that contain 



super-enhancers (P<10-11, Figure 4D) as well as for compartments that contain only 

conventional enhancers (P<10-12, Figure 4D).  

 

These data indicate that conventional enhancers, and in particular the constituent 

elements of super-enhancers, engage in spatial interactions with each other and with 

nearby enhancer elements, and that these interactions are significantly weakened – but 

not abolished – in cohesin-deficient thymocytes. The degree of weakening is highly 

significant statistically as well as biologically, as evidenced by the enrichment of 

deregulated genes in the proximity of enhancer elements described in Figure 1.  

 

Cell type-specificity of CTCF association and spatial clustering of super-enhancers. 

 

Super-enhancers are highly cell type-specific (Whyte et al., 2013), but the majority of 

CTCF binding sites are constitutive (Wang et al., 2012). Previous studies found 

significant enrichment of motifs for cell type-specific transcription factors, but not CTCF, 

at super-enhancers in ES cells and in B cells (Whyte et al., 2013; Hnisz et al., 2013). 

Comparison of CTCF ChIP-seq signal in thymocytes at super-enhancers that are active 

in thymocytes with super-enhancers that are specific for non-lymphoid cell types 

(macrophages, C2C12 myoblasts and ES cells) and inactive in thymocytes showed that 

binding of CTCF (Figure 5B, top) and the cohesin subunits RAD21 (Figure 5B, middle) 

and SMC1A (Figure 5B, bottom) was enriched at thymocyte-specific super-enhancers, 

but not at macrophage-, myoblast- or ES cell-specific super-enhancers. Importantly, and 

consistent with cell type-specific CTCF binding and cohesin recruitment, SIMA analysis 

of Hi-C interactions showed stronger interactions within thymocyte-specific super-

enhancers than within super-enhancers that are active in other cell types (Figure 5E). 

Cohesin depletion preferentially affected spatial interactions within thymocyte-specific 

super-enhancers (Figure 5E). 

 

Discussion. 

 

Our data show that a major function of cohesin is to regulate the expression of genes 

near enhancers. Chromosome conformation capture approaches indicate that 

enhancers and super-enhancers are clustered in 3-dimensional nuclear space and, 

importantly, that this spatial clustering of enhancer elements is mediated at least in part 



by cohesin. In the light of recent reports that chromosome conformation capture and 

FISH approaches do not always agree (Williamson et al., 2014) it will be important 

to confirm these results by independent methods. Cohesin binds to enhancers via its 

interaction with CTCF (Parelho et al., 2008; Wendt et al., 2008) and the cohesin loading 

factor NIPBL, which is enriched at gene regulatory elements (Kagey et al., 2010). 

Cohesin depletion results in the partial dispersal of super-enhancers and in the 

preferential deregulation of genes near enhancers and super-enhancers, suggesting the 

spatial clustering of enhancer elements as a candidate mechanism for the regulation of 

enhancer-proximal genes by cohesin. 

 

In ES cells, depletion of mediator or POU5F1 results in the downregulation of genes 

associated with super-enhancers (Whyte et al., 2013). Similarly, knockdown of cohesin 

in cycling ES cells compromised super-enhancer function (Hnisz et al., 2013). In 

thymocytes, cohesin does not appear to be required to maintain the marking of 

enhancers with H3K27ac, H3K4me1 or active transcription of enhancer elements. We 

find that genes associated with super-enhancers in thymocytes are equally likely to be 

upregulated or downregulated in Rad21-deleted thymocytes. Taken together, these data 

suggest that in non-cycling thymocytes cohesin acts primarily to define the spatial 

relationship between enhancers. The impact of cohesin depletion on super-enhancers 

function in rapidly cycling ES cells may be a cell type-specific effect, or could be 

secondary to the loss of essential cohesin functions in the cell cycle (Lin et al., 2005; 

Maimets et al., 2008).  

 

ChIP-seq data indicate CTCF binding and cohesin recruitment to thymocyte super-

enhancers, and Hi-C data show increased spatial interactions specifically of thymocyte-

specific, but not ES cell-specific super-enhancers in thymocytes. Binding of CTCF to the 

edges of super-enhancers in thymocytes provides an interesting contrast to ES cells, 

where super-enhancers are not directly flanked by CTCF (Hnisz et al., 2013; Dowen et 

al., 2014). These data point to cell type-specific differences in CTCF binding to super-

enhancers, while cohesin is enriched at super-enhancers in ES cell as well as in 

thymocytes (Hnisz et al., 2013; Dowen et al., 2014; this study). 

 

We imagine that co-evolution of regulatory elements, CTCF binding sites and cohesin 

recruitment mechanisms has allowed for the optimal integration of cohesin-based 



interactions to meet the requirements of specific genomic regions in specific cell types. 

Our data suggest a model where the spatial clustering of enhancer elements by cohesin 

can either isolate or connect gene promoters to enhancers (Figure 5F). Cohesin 

depletion can up- or downregulate gene expression, but the direction of change is non-

random: Expression of the most actively transcribed genes is preferentially reduced, 

suggesting that the dispersal of enhancer interactions has a negative impact on the 

expression of these genes. In contrast, poorly transcribed genes appear to benefit from 

the dispersal of clustered enhancers, as their expression is preferentially enhanced. 

Spatial clustering therefore provides a unifying mechanism to explain how CTCF and 

cohesin can simultaneously facilitate 'appropriate' enhancer-promoter interactions 

(Kagey et al., 2010; Seitan et al., 2011) and block 'inappropriate' enhancer-promoter 

interactions, a function previously described as 'insulation' (Wallace and Felsenfeld, 

2007). 

 

Methods. 

 

Experimental methods. The conditional Rad21 allele crossed to CD4Cre has been 

described (Seitan et al., 2011). Methods for RT- and genomic PCR, chromosome 

conformation capture and ChIP-seq have been described (Seitan et al., 2011). ChIP was 

performed using antibodies to SMC1A (Bethyl Laboratories, A300-055A), H3K27ac 

(Active Motif, 39133), H3K4me1 (Abcam, ab8895) and Histone H3 (Abcam, ab1791). 

Single read sequencing libraries were prepared from 10ng of ChIP DNA and sequenced 

according to the manufacturer's protocols (Illumina Genome Analyzer II). Reads of 38 

bases were aligned to the Mus musculus mm9 genome assembly using ELAND 

(Illumina) and wig files generated with FindPeaks 

(http://vancouvershortr.sourceforge.net; Fejes et al., 2008) were visualised with the 

UCSC Genome Browser (http://www.genome.ucsc.edu/). 

For 3C cells were fixed in 10% FCS, 1% formaldehyde for 10 minutes at room 

temperature and fixation was stopped with glycine (0.125M). 107 cells per sample were 

lysed in 10mM Tris, pH8, 10mM NaCl, 5mM MgCl2, 0.2% NP-40 for 30 min on ice. The 

nuclei were pelleted and re-suspended in 0.5ml 1.2x digestion buffer (NEB2, New 

England BioLabs) and permeabilised with SDS (0.5% final concentration) for 1 hr at 

370C, shaking at 800rpm and 3.3% Triton X-100 were added for an additional 1 hour at 

370C. 2000U HindIII (New England BioLabs) were added before incubation over night at 



(370C, 800rpm) and inactivated with SDS (1.5%, 650C, 30 min). The reaction was diluted 

in 6.2 ml 1.1x T4 ligase buffer (New England BioLabs) and incubated at 370C for 1h after 

addition of 1% Triton X-100. 800U T4 DNA ligase (New England BioLabs) was added for 

4 hrs at 160C, crosslinking was reversed by 300μg proteinase K (650C, 16h). 300μg 

RNase A was added for 1h at 370C. DNA was isolated by phenol/chloroform extraction 

and ethanol precipitation, quantified using Quant-iT PicoGreen (Invitrogen) and 200ng 

DNA were used per TaqMan PCR reaction (QuantiFast, Qiagen). Data were normalised 

to the cross-linking frequency between the anchor and the neighbouring HindIII 

fragment. Chromatin fractionation was carried out as described (Seitan et al, 2006) and 

immunoblots were performed using antibodies to SMC3 (Abcam, ab9263) and SMC1A 

(Bethyl Laboratories, A300-055A. Primers used in 3C experiments are listed in 

Supplemental Table 2. Primers used in ChIP-PCR experiments are listed in 

Supplemental Table 3. 

 

Data. Hi-C, RNA-seq and ChIP-seq data sets used in this study are listed in 

Supplemental Table 4. 

 

ChIP-seq read mapping and peak calling. Read alignment for H3K27ac, SMC1A, 

RAD21, MED1, NIPBL, CTCF, H3K4me3 and H3K4me1 was carried out using Bowtie 

version 0.12.8 (Langmead et al., 2010) discarding multi-mapping reads and allowing no 

more than two mismatches (“–m 1 –v 2”). Peak calling was carried out for H3K27ac and 

CTCF using MACS version 1.4.2 with default settings (Zhang et al., 2008). 

 

RNA-seq data analysis. Raw reads for each condition and replicate were independently 

aligned to mouse transcript sequences (cDNA sequences from Ensembl version 66, 

NCBI37/mm9) using Bowtie version 0.12.8 with default parameters as described (Seitan 

et al., 2013). Gene expression estimates and normalized count equivalents were 

obtained using MMSEQ version 0.11.2 (http://github.com/eturro/mmseq; Turro et al., 

2011) and we used the Bioconductor R package DESeq version 1.6.1 

(http://bioconductor.org/packages/release/bioc/html/DESeq.html; Anders and Huber, 

2010) to determine significantly differentially expressed genes in control versus cohesin-

deficient thymocytes at FDR=0.05 as described (Seitan et al., 2013). Expressed genes 

were defined as those having log(expression_level+1)≥1 in control cells; otherwise 

genes were considered silent (Seitan et al., 2013). 



 

Hi-C data analysis. Iterative error correction was performed as described (Imakaev et 

al., 2012). The HOMER Hi-C software analysis pipeline 

(http://homer.salk.edu/homer/interactions/index.html) was used to determine significant 

interactions, differential interactions and to perform Structured Interaction Matrix 

Analysis (SIMA) (Lin et al., 2012). Paired-end reads were trimmed to remove sequence 

following the canonical HindIII ligation junction sequence (1bp mismatch allowed to 

account for potential star activity). Trimmed reads were aligned independently to the 

mouse reference genome assembly (NCBI37/mm9) using Bowtie 2 (Langmead and 

Salzberg, 2012) in local mode with a maximum of one mismatch in the seed alignment 

(“--local -N 1”). Paired-end reads were merged and filtered to remove duplicate read 

pairs ("-tbp 1"), paired-end reads likely representing continuous genomic fragments or 

re-ligation events ("-removePEbg"), self-ligations ("-removeSelfLigation") and reads 

originating from regions with unusually high tag density ("-removeSpikes 10000 5"). 

Additionally, only read-pairs where both ends mapped near restriction sites were 

retained ("-both"). To determine genomic features associated with chromatin 

interactions, we used SIMA, which pools Hi-C information associated with a given set of 

genomic regions within a specified set of domains (Lin et al., 2012). We used default 

resolution ("-res 2500") and optimal Hi-C interaction search space parameters ("-

superRes 10000") to consider all reads within a 10kb window around the centre of each 

feature. Within-compartment associations were assessed independently in control and 

cohesin-deficient thymocytes for RAD21 peaks, canonical TSSs (excluding 

pseudogenes; Ensembl version 66), conventional enhancers (Shen et al. 2012) and 

random regions, as described previously (Seitan et al. 2013). Within-super-enhancer 

interactions were assessed for all super-enhancers of more than 100kb or 50kb in 

length. ‘Peaks’ within these regions were defined by taking the summits of constituent 

H3K27ac peaks, extending to 1kb and taking the intersection of these regions between 

all samples. Super-enhancers that are not active in thymocytes contain no or very few 

H3K27ac peaks and we chose random “peaks” within them such that the number of 

peaks in each region was similar to the number of peaks in thymocyte super-enhancers 

of comparable size. All interactions were normalized using HOMER with a background 

model that takes sequencing depth and genomic distance between interacting regions 

into account. The size and direction of change in interaction ratios in cohesin-depleted 

thymocytes was compared using a paired statistical test (Wilcoxon signed-rank test) to 



provide a measure for the cohesin dependence of long-range interactions between 

specific features. 

 

Identification of super-enhancers. Super-enhancers were defined using ROSE 

(https://bitbucket.org/young_computation/rose) (Whyte et al., 2013) with a transcription 

start site exclusion zone size of 4kb (-t 2000) and the default stitching size of 12.5kb. 

H3K27ac peaks were used as input constituent enhancers, and input-subtracted 

H3K27ac ChIP-seq signal was used for ranking the stitched regions. We defined a 

consensus set of super-enhancers by taking the intersection of regions between two 

biological replicates for each cell type, and then taking the union of these regions 

between control and cohesin-deficient cells. The remaining regions from ROSE output 

were filtered to remove regions within 2.5kb of a transcription start site and a consensus 

set of conventional enhancers was defined in the same way as for super-enhancers. 

 

Assignment of enhancers to genes. ‘Nearest neighbor’ genes are defined by 

assigning enhancers or super-enhancers to the expressed transcript whose TSS is the 

nearest to the center of the enhancer. ‘Overlapping genes’ are those where any part of 

the gene body overlaps an enhancer or super-enhancer. Genes with a TSS within 40kb 

of a super-enhancer are also considered.  

 

Grouping super-enhancers by CTCF binding. We defined a super-enhancer boundary 

as being bound by CTCF if there was a CTCF peak within 2kb of the edge of the super-

enhancer as defined above. The R package genomation (Akalin et al., 2014) was used 

to generate the heatmap in Figure 3C. 

 

Multinomial logistic regression model. We used a multinomial logistic regression 

model to predict gene expression changes in cohesin-deficient thymocytes as previously 

described (Seitan et al., 2013). In addition to the previously used features, we included 

the variables gene position 'Next to enhancer' (genes that are nearest neighbors of 

conventional enhancers), 'Near enhancer cluster' (genes positioned within 40kb of an 

enhancer cluster) and 'Next to enhancer cluster’ (genes that are nearest neighbors of 

super-enhancers).  

 



Data Access.  ChIP-seq data from this study have been submitted to NCBI Gene 

Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/) under accession number 

GSE61428. The code used to produce the manuscript figures from the processed data is 

available as Supplemental File 1. 
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Figure legends 
 

Figure 1. Cohesin facilitates the regulated expression of genes located near 

enhancer elements. 

(A) Enhancers and super-enhancers (Supplemental Figure 1) emerge as major 

determinants of cohesin-dependent gene regulation. The 'Next to enhancer' category 

includes genes that are nearest neighbours of conventional enhancers. The 'Near SE' 

category includes genes that are positioned within 40kb of an SE, including genes that 

overlap SEs and nearest neighbours of SEs. ‘Next to SE’ includes only nearest 

neighbours of SEs. 'Diff. Hi-C interaction': genes in 100kb regions that interact 

differentially in control and Rad21-deficient thymocytes (Seitan et al., 2013). Other 

categories refer to promoter binding of the listed factors (TSS ± 2.5kb). Multivariate 

multinomial regression analysis was done as described (Seitan et al., 2013). The 

statistical significance of regression model coefficients is indicated and only significant 

associations are shown. 

(B) Proximity to enhancers accounts for approximately 50% of genes deregulated in 

Rad21-deficient thymocytes. 'Enhancer': genes that are nearest neighbors or overlap 

conventional enhancers. 'SE': genes ± 40kb of a super-enhancer, overlapping a super-

enhancer, or that are nearest neighbours of super-enhancers. 

(C) Cohesin is required for the regulation of genes near enhancers and super-

enhancers. 'Genome average': expressed genes (17003 genes). 'Next to enhancer': 

nearest neighbors of conventional enhancers (3540 genes). 'Overlapping enhancer': 

genes that overlap conventional enhancers (198 genes). 'Near SE': ± 40kb of a super-

enhancer (1036 genes). 'Overlapping SE': overlap a super-enhancer (493 genes). 'Next 

to SE': nearest neighbors of super-enhancers (447 genes). Additional data are shown in 

Supplemental Table 1. 

 

Figure 2. Enhancer elements are maintained in cohesin-deficient thymocytes. 

(A) The Cd8 and the Ppp1r16b region (B) illustrate the maintenance of H3K27ac in 

cohesin-deficient thymocytes. Binding of the cohesin subunits RAD21 and SMC1A as 

well as CTCF is shown for reference (see below). 



(C) Rad21 deletion does not abolish H3K27ac marking of conventional enhancers (left), 

newly established developmentally regulated enhancers (red, middle) or super-

enhancers (right). 

(D) Enhancers and super-enhancers were stratified according to the ratio of H3K27ac in 

Rad21-deficient thymocytes over wild type. The frequency of deregulated genes is 

shown for the top, middle, and lower third of enhancers (left) and super-enhancers 

(right). 

 

Figure 3. Enhancer elements are enriched for CTCF and cohesin binding. 

(A) CTCF, RAD21 and SMC1A ChIP-seq signal enrichment in thymocytes at 

conventional enhancers. Enhancers were defined based on H2K27ac ChIP-seq data 

(Methods) and enhancer length was normalized in order to align the start and end of the 

enhancer. 

(B) CTCF, RAD21 and SMC1A ChIP-seq signal enrichment in thymocytes at super-

enhancers. Super-enhancers were defined based on H2K27ac ChIP-seq data (Methods) 

and enhancer length was normalized in order to align the start and end of the super-

enhancers, and flanking regions of equal size to the super-enhancer are shown for 

reference. “Start” and “end” are based on the genomic coordinates.  

(C) Classification of super-enhancers on the basis on CTCF binding at both boundaries, 

one boundary or neither boundary. Heat maps of ChIP-seq signal enrichment in 100kb 

windows around super-enhancer centres, grouped according to CTCF binding at the 

super-enhancer boundaries. Histone modifications, the cohesin loading factor NIPBL 

and the cohesin subunits RAD21 and SMC1A are shown for reference. 

 

Figure 4. Cohesin mediates the spatial clustering of enhancer elements. 

(A) The mouse Cd3 super-enhancer is flanked and punctuated by CTCF and cohesin 

binding (refer to Figure 2A and B for additional examples of the relationship between 

super-enhancers, CTCF and cohesin). Restriction fragments used for 3C analysis are 

indicated by grey bars. 'A' is a proximity ligation control that demonstrates comparable 

efficiency of 3C experiments. Enhancer-enhancer interactions B, C and D across the 

Cd3 super-enhancer were significantly reduced in Rad21-deficient (red) compared to 

control (black) thymocytes (Figure 4a, n=3, mean ± SD, * P<0.05).  

(B) Long-range interactions between the Cd3 super-enhancer and enhancer elements 

outside the Cd3 locus. 'E' is a control used to demonstrate background interactions with 



a downstream genomic fragment lacking H3K27ac marks and CTCF binding. The 

position of the Cd3 super-enhancer is marked by dashed lines. Interactions F, G, H, I 

and J link the Cd3 super-enhancer with downstream enhancer elements outside the Cd3 

region and were significantly reduced in Rad21-deficient (red) compared to control 

(black) thymocytes (n=3, mean ± SD, * P<0.05) 

(C) SIMA analysis of long-range interactions between chromatin features based on Hi-C 

data for control (grey) and Rad21-deficient (red) thymocytes. Interactions between 

constituent elements of super-enhancers (left) were analyzed by SIMA within super-

enhancer regions sized 100kb and larger. Interactions between other chromatin features 

were analyzed by SIMA within open chromatin compartments. Note that chromatin 

features show increased self interactions, while interactions of random regions (Seitan et 

al., 2013) conformed to the level of interactions predicted by a background model based 

on genomic distance and sequencing depth (dashed red line). 'Interaction strength' 

refers to the strength of interactions between 10kb regions within superenhancers (SEs) 

or 10kb regions within chromosomal compartments (Enh, RAD21 sites, TSS and random 

regions after normalisation to the background model. P-values shown are from a 

Wilcoxon signed-rank test. 

(D) Reduced enhancer-enhancer interactions in Rad21-deficient thymocytes based on 

SIMA analysis of Hi-C data are compared for all open chromosomal compartments and 

separately for compartments with or without super-enhancers. P-values shown are from 

a Wilcoxon signed-rank test. 

 

Figure 5. Cell type-specificity of CTCF association and spatial clustering of super-

enhancers. 

(A) CTCF (top), RAD21 (middle) and SMC1A (bottom) ChIP-seq signal in thymocytes at 

super-enhancers that are active in thymocytes (black), macrophages (purple), myoblasts 

(blue) or ES cells (green). 

(B) Preferential interactions within cell type-specific super-enhancers. SIMA analysis of 

thymocyte Hi-C data was used to compare interactions within super-enhancers active in 

thymocytes or other cell types. Left: Hi-C interactions in control (grey) and Rad21-

deficient thymocytes (red) within thymocyte super-enhancers sized 50kb or more 

(n=105). Right: Hi-C interactions in WT (light grey) and Rad21-deficient thymocytes 

(orange) within super-enhancers of 50kb or more that are active in pro-B cells, 



macrophages or ES cells (n=20; Whyte et al., 2013). P-values shown are from a 

Wilcoxon signed-rank test. 

(C) Model for the impact of cohesin-dependent enhancer-enhancer interactions on gene 

expression. Spatial clustering between enhancer elements can affect promoter activity 

positively and negatively. The promoters P1 and P3 are both distal to a super-enhancer. 

P1 is isolated as a result of the spatial clustering between the enhancer elements within 

the SE, while P3 is connected to the super-enhancer by enhancer-enhancer contacts 

(left). Removal of cohesin (right) decreases the spatial constraint on enhancer elements 

so that P1 is contacted more readily by enhancer elements, while P3 dissociates from 

the super-enhancer. 

 

Supplemental data files. 

 

Supplemental Figure S1. Impact of Rad21 deletion on the association of other cohesin 

subunits with chromatin  

Supplemental Figure S2. Super-enhancers in thymocytes. 

Supplemental Figure S3. Super-enhancers in Rad21-deleted thymocytes. 

Supplemental Table 1. Differentially expressed genes by enhancer-association group. 

Supplemental Table 2. Primers used for 3C experiments. 

Primers used in ChIP-PCR experiments are listed in Supplemental Table 3. 

Supplemental Table 4. Summary of Hi-C, RNA-seq and ChIP-seq data used. 

Supplemental File 1. Code to produce figures for manuscript from processed data. 
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