2,009 research outputs found

    Effects of nucleus initialization on event-by-event observables

    Get PDF
    In this work we present a study of the influence of nucleus initializations on the event-by-event elliptic flow coefficient, v2v_2. In most Monte-Carlo models, the initial positions of the nucleons in a nucleus are completely uncorrelated, which can lead to very high density regions. In a simple, yet more realistic model where overlapping of the nucleons is avoided, fluctuations in the initial conditions are reduced. However, v2v_2 distributions are not very sensitive to the initialization choice.Comment: 4 pages, 5 figures, to appear in the Bras. Jour. Phy

    Semihard Interactions in Nuclear Collisions Based on a Unified Approach to High Energy Scattering

    Get PDF
    Our ultimate goal is the construction of a model for interactions of two nuclei in the energy range between several tens of GeV up to several TeV per nucleon in the centre-of-mass system. Such nuclear collisions are very complex, being composed of many components, and therefore some strategy is needed to construct a reliable model. The central point of our approach is the hypothesis, that the behavior of high energy interactions is universal (universality hypothesis). So, for example, the hadronization of partons in nuclear interactions follows the same rules as the one in electron-positron annihilation; the radiation of off-shell partons in nuclear collisions is based on the same principles as the one in deep inelastic scattering. We construct a model for nuclear interactions in a modular fashion. The individual modules, based on the universality hypothesis, are identified as building blocks for more elementary interactions (like e^+ e^-, lepton-proton), and can therefore be studied in a much simpler context. With these building blocks under control, we can provide a quite reliable model for nucleus-nucleus scattering, providing in particular very useful tests for the complicated numerical procedures using Monte Carlo techniques.Comment: 10 pages, no figures; Proc. of the ``Workshop on Nuclear Matter in Different Phases and Transitions'', Les Houches, France, March 31 - April 10, 199

    Initial Condition for QGP Evolution from NEXUS

    Full text link
    We recently proposed a new approach to high energy nuclear scattering, which treats the initial stage of heavy ion collisions in a sophisticated way. We are able to calculate macroscopic quantities like energy density and velocity flow at the end of this initial stage, after the two nuclei having penetrated each other. In other words, we provide the initial conditions for a macroscopic treatment of the second stage of the collision. We address in particular the question of how to incorporate the soft component properly. We find almost perfect "Bjorken scaling": the rapidity coincides with the space-time rapidity, whereas the transverse flow is practically zero. The distribution of the energy density in the transverse plane shows typically a very "bumpy" structure.Comment: 17 pages, 24 figure

    Gd(III)-Gd(III) Relaxation-Induced Dipolar Modulation Enhancement for In-Cell Electron Paramagnetic Resonance Distance Determination

    No full text
    In-cell distance determination by electron paramagnetic resonance (EPR) spectroscopy reveals essential structural information about biomacromolecules under native conditions. We demonstrate that the pulsed EPR technique RIDME (relaxation induced dipolar modulation enhancement) can be utilized for such distance determination. The performance of in-cell RIDME has been assessed at Q-band using stiff molecular rulers labeled with Gd(III)-PyMTA and microinjected into Xenopus laevis oocytes. The overtone coefficients are determined to be the same for protonated aqueous solutions and inside cells. As compared to in-cell DEER (double electron-electron resonance, also abbreviated as PELDOR), in-cell RIDME features approximately 5 times larger modulation depth and does not show artificial broadening in the distance distributions due to the effect of pseudosecular terms

    Comparison of Hadronic Interaction Models at Auger Energies

    Get PDF
    The three hadronic interaction models DPMJET 2.55, QGSJET 01, and SIBYLL 2.1, implemented in the air shower simulation program CORSIKA, are compared in the energy range of interest for the Pierre Auger experiment. The model dependence of relevant quantities in individual hadronic interactions and air showers is investigated.Comment: Contribution to XII Int. Symp. on Very High Energy Cosmic Ray Interactions, 4 pages, 8 figure

    Attosecond transient absorption spectroscopy without inversion symmetry

    Get PDF
    Transient absorption is a very powerful observable in attosecond experiments on atoms, molecules and solids and is frequently used in experiments employing phase-locked few-cycle infrared and XUV laser pulses derived from high harmonic generation. We show numerically and analytically that in non-centrosymmetric systems, such as many polyatomic molecules, which-way interference enabled by the lack of parity conservation leads to new spectral absorption features, which directly reveal the laser electric field. The extension of attosecond transient absorption spectroscopy (ATAS) to such targets hence becomes sensitive to global and local inversion symmetry. We anticipate that ATAS will find new applications in non-centrosymmetric systems, in which the carrier-to-envelope phase of the infrared pulse becomes a relevant parameter and in which the orientation of the sample and the electronic symmetry of the molecule can be addressed
    • 

    corecore