107 research outputs found
Fluid dynamics, sediment transport and mixing about the confluence of Negro and Solimões rivers, Manaus, Brazil
As part of a project to investigate the hydrodynamic, sediment transport and mixing processes about the large confluences of the Amazon River, a field study was conducted about the confluence of the Negro and Solimões Rivers. This confluence ranks among the largest confluences on Earth the outcomes of this study may also provide some general insights into large confluence dynamics. A detailed series of ADCP, water quality and seismic profile measurements were collected to investigate key hydrodynamic and morphodynamic features about this confluence. Presented here are the key hydrodynamic features observed about this large confluence and how these relate to findings in previous studies
conducted in flumes and small confluences. Finally some insights into how the differences in water characteristics and the hydrodynamics of these two rivers may influence the rate of mixing downstream are presented
Shear flow effects on phase separation of entangled polymer blends
We introduce an entanglement model mixing rule for stress relaxation in a polymer blend to a modified Cahn-Hilliard equation of motion for concentration fluctuations in the presence of shear flow. Such an approach predicts both shear-induced mixing and demixing, depending on the relative relaxation times and plateau moduli of the two components
Mechanical Properties of End-crosslinked Entangled Polymer Networks using Sliplink Brownian Dynamics Simulations
The mechanical properties of a polymeric network containing both crosslinks
and sliplinks (entanglements) are studied using a multi-chain Brownian dynamics
simulation. We coarse-grain at the level of chain segments connecting
consecutive nodes (cross- or sliplinks), with particular attention to the
Gaussian statistics of the network. Affine displacement of nodes is not
imposed: their displacement as well as sliding of monomers through sliplinks is
governed by force balances. The simulation results of stress in uniaxial
extension and the full stress tensor in simple shear including the (non-zero)
second normal stress difference are presented for monodisperse chains with up
to 18 entanglements between two crosslinks. The cases of two different force
laws of the subchains (Gaussian chains and chains with finite extensibility)
for two different numbers of monomers in a subchain (no = 50 and no = 100) are
examined. It is shown that the additivity assumption of slip- and crosslink
contribution holds for sufficiently long chains with two or more entanglements,
and that it can be used to construct the strain response of a network of
infinitely long chains. An important consequence is that the contribution of
sliplinks to the small-strain shear modulus is about ⅔ of the
contribution of a crosslink
Risk Factors for Intra-Abdominal Candidiasis in Intensive Care Units: Results from EUCANDICU Study
Introduction: Intra-abdominal infections represent the second most frequently acquired infection in the intensive care unit (ICU), with mortality rates ranging from 20% to 50%. Candida spp. may be responsible for up to 10–30% of cases. This study assesses risk factors for development of intra-abdominal candidiasis (IAC) among patients admitted to ICU. Methods: We performed a case–control study in 26 European ICUs during the period January 2015–December 2016. Patients at least 18 years old who developed an episode of microbiologically documented IAC during their stay in the ICU (at least 48 h after admission) served as the case cohort. The control group consisted of adult patients who did not develop episodes of IAC during ICU admission. Matching was performed at a ratio of 1:1 according to time at risk (i.e. controls had to have at least the same length of ICU stay as their matched cases prior to IAC onset), ICU ward and period of study. Results: During the study period, 101 case patients with a diagnosis of IAC were included in the study. On univariate analysis, severe hepatic failure, prior receipt of antibiotics, prior receipt of parenteral nutrition, abdominal drain, prior bacterial infection, anastomotic leakage, recurrent gastrointestinal perforation, prior receipt of antifungal drugs and higher median number of abdominal surgical interventions were associated with IAC development. On multivariate analysis, recurrent gastrointestinal perforation (OR 13.90; 95% CI 2.65–72.82, p = 0.002), anastomotic leakage (OR 6.61; 95% CI 1.98–21.99, p = 0.002), abdominal drain (OR 6.58; 95% CI 1.73–25.06, p = 0.006), prior receipt of antifungal drugs (OR 4.26; 95% CI 1.04–17.46, p = 0.04) or antibiotics (OR 3.78; 95% CI 1.32–10.52, p = 0.01) were independently associated with IAC. Conclusions: Gastrointestinal perforation, anastomotic leakage, abdominal drain and prior receipt of antifungals or antibiotics may help to identify critically ill patients with higher probability of developing IAC. Prospective studies are needed to identify which patients will benefit from early antifungal treatment
Prediction of multiple overshoots in shear stress during fast flows of bidisperse polymer melts
We present a differential constitutive model of stress relaxation in polydisperse linear polymer melts and solutions that contains contributions from reptation, contour-length fluctuations, and chain stretching. The predictions of the model during fast start-up and steady shear flows of polymer melts are in accord with experimental observations. Moreover, in accordance with reported experimental literature (Osaki et al. in J Polym Sci B Polym Phys 38:2043–2050, 2000), the model predicts, for a range of shear rates, two overshoots in shear stress during start-up of steady shear flows of bidisperse polymer melts having components with widely separated molar masses. Two overshoots result only when the stretch or Rouse relaxation time of the higher molar mass component is longer than the terminal relaxation time of the lower molar mass component. The “first overshoot” is the first to appear with increasing shear rate and occurs as a result of the stretching of longer chains. Transient stretching of the short chains is responsible for the early time second overshoot. The model predictions in steady and transitional extensional flows are also remarkable for both monodisperse and bidisperse polymer solutions. The computationally efficient differential model can be used to predict rheology of commercial polydisperse polymer melts and solutions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45865/1/397_2005_Article_60.pd
Incidence and outcome of invasive candidiasis in intensive care units (ICUs) in Europe: results of the EUCANDICU project
BACKGROUND: The objective of this study was to assess the cumulative incidence of invasive candidiasis (IC) in intensive care units (ICUs) in Europe. METHODS: A multinational, multicenter, retrospective study was conducted in 23 ICUs in 9 European countries, representing the first phase of the candidemia/intra-abdominal candidiasis in European ICU project (EUCANDICU). RESULTS: During the study period, 570 episodes of ICU-acquired IC were observed, with a cumulative incidence of 7.07 episodes per 1000 ICU admissions, with important between-center variability. Separated, non-mutually exclusive cumulative incidences of candidemia and IAC were 5.52 and 1.84 episodes per 1000 ICU admissions, respectively. Crude 30-day mortality was 42%. Age (odds ratio [OR] 1.04 per year, 95% CI 1.02-1.06, p < 0.001), severe hepatic failure (OR 3.25, 95% 1.31-8.08, p 0.011), SOFA score at the onset of IC (OR 1.11 per point, 95% CI 1.04-1.17, p 0.001), and septic shock (OR 2.12, 95% CI 1.24-3.63, p 0.006) were associated with increased 30-day mortality in a secondary, exploratory analysis. CONCLUSIONS: The cumulative incidence of IC in 23 European ICUs was 7.07 episodes per 1000 ICU admissions. Future in-depth analyses will allow explaining part of the observed between-center variability, with the ultimate aim of helping to improve local infection control and antifungal stewardship projects and interventions
Advances in modeling transport phenomena in material-extrusion additivemanufacturing: Coupling momentum, heat, and mass transfer
Material-extrusion (MatEx) additive manufacturing involves layer-by-layer assembly ofextruded material onto a printer bed and has found applications in rapid prototyping.Both material and machining limitations lead to poor mechanical properties of printedparts. Such problems may be addressed via an improved understanding of thecomplex transport processes and multiphysics associated with the MatEx process.Thereby, this review paper describes the current (last 5 years) state of the art modelingapproaches based on momentum, heat and mass transfer that are employed in aneffort to achieve this understanding. We describe how specific details regardingpolymer chain orientation, viscoelastic behavior and crystallization are often neglectedand demonstrate that there is a key need to couple the transport phenomena. Such acombined modeling approach can expand MatEx applicability to broader applicationspace, thus we present prospective avenues to provide more comprehensive modelingand therefore new insights into enhancing MatEx performanc
- …