3,633 research outputs found
Dynamic Spin-Polarized Resonant Tunneling in Magnetic Tunnel Junctions
Precisely engineered tunnel junctions exhibit a long sought effect that
occurs when the energy of the electron is comparable to the potential energy of
the tunneling barrier. The resistance of metal-insulator-metal tunnel junctions
oscillates with an applied voltage when electrons that tunnel directly into the
barrier's conduction band interfere upon reflection at the classical turning
points: the insulator-metal interface, and the dynamic point where the incident
electron energy equals the potential barrier inside the insulator. A model of
tunneling between free electron bands using the exact solution of the
Schroedinger equation for a trapezoidal tunnel barrier qualitatively agrees
with experiment.Comment: 4pgs, 3 fig
Arctic and subarctic environmental analyses utilizing ERTS-1 imagery
The author has identified the following significant results. ERTS-1 imagery provides a means of distinguishing and monitoring estuarine surface water circulation patterns and changes in the relative sediment load of discharging rivers on a regional basis. Physical boundaries mapped from ERTS-1 imagery in combination with ground truth obtained from existing small scale maps and other sources resulted in improved and more detailed maps of permafrost terrain and vegetation for the same area. Snowpack cover within a research watershed has been analyzed and compared to ground data. Large river icings along the proposed Alaska pipeline route from Prudhoe Bay to the Brooks Range have been monitored. Sea ice deformation and drift northeast of Point Barrow, Alaska have been measured during a four day period in March and shore-fast ice accumulation and ablation along the west coast of Alaska have been mapped for the spring and early summer seasons
Patenting and licensing of university research: promoting innovation or undermining academic values?
Since the 1980s in the US and the 1990s in Europe, patenting and licensing activities by universities have massively increased. This is strongly encouraged by governments throughout the Western world. Many regard academic patenting as essential to achieve 'knowledge transfer' from academia to industry. This trend has far-reaching consequences for access to the fruits of academic research and so the question arises whether the current policies are indeed promoting innovation or whether they are instead a symptom of a pro-intellectual property (IP) culture which is blind to adverse effects. Addressing this question requires both empirical analysis (how real is the link between academic patenting and licensing and 'development' of academic research by industry?) and normative assessment (which justifications are given for the current policies and to what extent do they threaten important academic values?). After illustrating the major rise of academic patenting and licensing in the US and Europe and commenting on the increasing trend of 'upstream' patenting and the focus on exclusive as opposed to non-exclusive licences, this paper will discuss five negative effects of these trends. Subsequently, the question as to why policymakers seem to ignore these adverse effects will be addressed. Finally, a number of proposals for improving university policies will be made
Influences on academics' approaches to development: voices from below
The purpose of this qualitative case study research was to explore faculty-based academicsâ views on what influences their behaviours and attitudes towards their development. Informed by critical realist ontology, the data collection was carried out through narrative interviews with academics in two contrasting English Universities. Findings, or areas for reflection, have emerged about the constraints and enablements academics perceive in respect of their professional development. In particular, themes such as the significance of professional status; misaligned initiatives and priorities; the influence of supportive networks; and emergent personal, individual concerns have surfaced. The conclusion is drawn that the significance of agency raises the importance of responding to the âvoices from belowâ
Magnetic-Field-Driven Director Configuration Transitions In Radial Nematic Liquid Crystal Droplets
We study the director configurations of nematic liquid crystal (NLC) droplets with homeotropic anchoring in a magnetic field and report observation of a magnetic-field-driven transition from a deformed radial to an axial-with-defect configuration. Magnetic-field-induced transitions in NLC droplets differ fundamentally from the traditional planar Freedericksz transition due to the spherical droplet geometry and resulting topological defect. This transition has been studied theoretically, but the director configurations and mechanism of defect evolution in an applied magnetic field have yet to be observed experimentally. To this end, we combine polarized optical microscopy with a variable electromagnet (†1 T) for continuous observation of droplet director fields, and we employ Landauâde Gennes numerical simulations to elucidate the director configurations and first-order nature of the transition. We report a configuration transition from point defect to ring defect at a critical field, which varies inversely with droplet radius and is relatively independent of surfactant type and concentration. We also estimate anchoring strengths of commonly used surfactants at the NLC-aqueous interface
High Humidity Leads to Loss of Infectious Influenza Virus from Simulated Coughs
Background
The role of relative humidity in the aerosol transmission of influenza was examined in a simulated examination room containing coughing and breathing manikins. Methods
Nebulized influenza was coughed into the examination room and Bioaerosol samplers collected size-fractionated aerosols (\u3c1 ”M, 1â4 ”M, and \u3e4 ”M aerodynamic diameters) adjacent to the breathing manikinâs mouth and also at other locations within the room. At constant temperature, the RH was varied from 7â73% and infectivity was assessed by the viral plaque assay. Results
Total virus collected for 60 minutes retained 70.6â77.3% infectivity at relative humidity â€23% but only 14.6â22.2% at relative humidity â„43%. Analysis of the individual aerosol fractions showed a similar loss in infectivity among the fractions. Time interval analysis showed that most of the loss in infectivity within each aerosol fraction occurred 0â15 minutes after coughing. Thereafter, losses in infectivity continued up to 5 hours after coughing, however, the rate of decline at 45% relative humidity was not statistically different than that at 20% regardless of the aerosol fraction analyzed. Conclusion
At low relative humidity, influenza retains maximal infectivity and inactivation of the virus at higher relative humidity occurs rapidly after coughing. Although virus carried on aerosol particles \u3c4 ”M have the potential for remaining suspended in air currents longer and traveling further distances than those on larger particles, their rapid inactivation at high humidity tempers this concern. Maintaining indoor relative humidity \u3e40% will significantly reduce the infectivity of aerosolized virus
A Bayesian Latent Variable Mixture Model for Longitudinal Fetal Growth
Fetal growth restriction is a leading cause of perinatal morbidity and mortality that could be reduced if high risk infants are identified early in pregnancy. We propose a Bayesian model for aggregating 18 longitudinal ultrasound measurements of fetal size and blood flow into three underlying, continuous latent factors. Our procedure is more flexible than typical latent variable methods in that we relax the normality assumptions by allowing the latent factors to follow finite mixture distributions. Using mixture distributions also permits us to cluster individuals with similar observed characteristics and identify latent classes of subjects who are more likely to be growth or blood flow restricted during pregnancy. We also use our latent variable mixture distribution model to identify a clinically-meaningful latent class of subjects with low birth weight and early gestational age. We then examine the association of latent classes of intrauterine growth restriction with latent classes of birth outcomes as well as observed maternal covariates including fetal gender and maternal race, parity, body mass index (BMI), and height. Our methods identified a latent class of subjects who have increased blood flow restriction and below average intrauterine size during pregnancy who were more likely to be growth restricted at birth than a class of individuals with typical size and blood flow
B->rho pi decays, resonant and nonresonant contributions
We point out that a new contribution to B decays to three pions is relevant
in explaining recent data from the CLEO and BABAR collaborations, in particular
the results on quasi-two-body decays via a rho meson. We also discuss the
relevance of these contribution to the measurement of CP violations.Comment: 5 pages, 2 figures, few references and minor comments adde
Theoretical current-voltage characteristics of ferroelectric tunnel junctions
We present the concept of ferroelectric tunnel junctions (FTJs). These
junctions consist of two metal electrodes separated by a nanometer-thick
ferroelectric barrier. The current-voltage characteristics of FTJs are analyzed
under the assumption that the direct electron tunneling represents the dominant
conduction mechanism. First, the influence of converse piezoelectric effect
inherent in ferroelectric materials on the tunnel current is described. The
calculations show that the lattice strains of piezoelectric origin modify the
current-voltage relationship owing to strain-induced changes of the barrier
thickness, electron effective mass, and position of the conduction-band edge.
Remarkably, the conductance minimum becomes shifted from zero voltage due to
the piezoelectric effect, and a strain-related resistive switching takes place
after the polarization reversal in a ferroelectric barrier. Second, we analyze
the influence of the internal electric field arising due to imperfect screening
of polarization charges by electrons in metal electrodes. It is shown that, for
asymmetric FTJs, this depolarizing-field effect also leads to a considerable
change of the barrier resistance after the polarization reversal. However, the
symmetry of the resulting current-voltage loop is different from that
characteristic of the strain-related resistive switching. The crossover from
one to another type of the hysteretic curve, which accompanies the increase of
FTJ asymmetry, is described taking into account both the strain and
depolarizing-field effects. It is noted that asymmetric FTJs with dissimilar
top and bottom electrodes are preferable for the non-volatile memory
applications because of a larger resistance on/off ratio.Comment: 14 pages, 8 figure
- âŠ