3,788 research outputs found

    Extracting constraints from direct detection searches of supersymmetric dark matter in the light of null results from the LHC in the squark sector

    Full text link
    The comparison of the results of direct detection of Dark Matter, obtained with various target nuclei, requires model-dependent, or even arbitrary, assumptions. Indeed, to draw conclusions either the spin-dependent (SD) or the spin-independent (SI) interaction has to be neglected. In the light of the null results from supersymmetry searches at the LHC, the squark sector is pushed to high masses. We show that for a squark sector at the TeV scale, the framework used to extract contraints from direct detection searches can be redefined as the number of free parameters is reduced. Moreover, the correlation observed between SI and SD proton cross sections constitutes a key issue for the development of the next generation of Dark Matter detectors.Comment: Figure 3 has been updated. Conclusions unchange

    A Graphical Language to Query Conceptual Graphs

    Get PDF
    This paper presents a general query language for conceptual graphs. First, we introduce kernel query graphs. A kernel query graph can be used to express an "or" between two sub-graphs, or an "option" on an optional sub-graph. Second, we propose a way to express two kinds of queries (ask and select) using kernel query graphs. Third, the answers of queries are computed by an operation based on graph homomorphism: the projection from a kernel query graph

    Generalized squeezed-coherent states of the finite one-dimensional oscillator and matrix multi-orthogonality

    Full text link
    A set of generalized squeezed-coherent states for the finite u(2) oscillator is obtained. These states are given as linear combinations of the mode eigenstates with amplitudes determined by matrix elements of exponentials in the su(2) generators. These matrix elements are given in the (N+1)-dimensional basis of the finite oscillator eigenstates and are seen to involve 3x3 matrix multi-orthogonal polynomials Q_n(k) in a discrete variable k which have the Krawtchouk and vector-orthogonal polynomials as their building blocks. The algebraic setting allows for the characterization of these polynomials and the computation of mean values in the squeezed-coherent states. In the limit where N goes to infinity and the discrete oscillator approaches the standard harmonic oscillator, the polynomials tend to 2x2 matrix orthogonal polynomials and the squeezed-coherent states tend to those of the standard oscillator.Comment: 18 pages, 1 figur

    Modelling stochastic bivariate mortality

    Get PDF
    Stochastic mortality, i.e. modelling death arrival via a jump process with stochastic intensity, is gaining increasing reputation as a way to represent mortality risk. This paper represents a first attempt to model the mortality risk of couples of individuals, according to the stochastic intensity approach. On the theoretical side, we extend to couples the Cox processes set up, i.e. the idea that mortality is driven by a jump process whose intensity is itself a stochastic process, proper of a particular generation within each gender. Dependence between the survival times of the members of a couple is captured by an Archimedean copula. On the calibration side, we fit the joint survival function by calibrating separately the (analytical) copula and the (analytical) margins. First, we select the best fit copula according to the methodology of Wang and Wells (2000) for censored data. Then, we provide a sample-based calibration for the intensity, using a time-homogeneous, non mean-reverting, affine process: this gives the analytical marginal survival functions. Coupling the best fit copula with the calibrated margins we obtain, on a sample generation, a joint survival function which incorporates the stochastic nature of mortality improvements and is far from representing independency.On the contrary, since the best fit copula turns out to be a Nelsen one, dependency is increasing with age and long-term dependence exists

    On Global Types and Multi-Party Session

    Get PDF
    Global types are formal specifications that describe communication protocols in terms of their global interactions. We present a new, streamlined language of global types equipped with a trace-based semantics and whose features and restrictions are semantically justified. The multi-party sessions obtained projecting our global types enjoy a liveness property in addition to the traditional progress and are shown to be sound and complete with respect to the set of traces of the originating global type. Our notion of completeness is less demanding than the classical ones, allowing a multi-party session to leave out redundant traces from an underspecified global type. In addition to the technical content, we discuss some limitations of our language of global types and provide an extensive comparison with related specification languages adopted in different communities

    A framework for pathologies of message sequence charts

    Get PDF
    This is the post-print version of the final paper published in Information Software and Technology. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2012 Elsevier B.V.Context - It is known that a Message Sequence Chart (MSC) specification can contain different types of pathology. However, definitions of different types of pathology and the problems caused by pathologies are unclear, let alone the relationships between them. In this circumstance, it can be problematic for software engineers to accurately predict the possible problems that may exist in implementations of MSC specifications and to trace back to the design problems in MSC specifications from the observed problems of an implementation. Objective - We focus on generating a clearer view on MSC pathologies and building formal relationships between pathologies and the problems that they may cause. Method - By concentrating on the problems caused by pathologies, a categorisation of problems that a distributed system may suffer is first introduced. We investigate the different types of problems and map them to categories of pathologies. Thus, existing concepts related to pathology are refined and necessary concepts in the pathology framework are identified. Finally, we formally prove the relationships between the concepts in the framework. Results - A pathology framework is established as desired based on a restriction that considers problematic scenarios with a single undesirable event. In this framework, we define disjoint categories of both pathologies and the problems caused; the identified types of pathology are successfully mapped to the problems that they may cause. Conclusion - The framework achieved in this paper introduces taxonomies into and clarifies relationships between concepts in research on MSC pathologies. The taxonomies and relationships in the framework can help software engineers to predict problems and verify MSC specifications. The single undesirable event restriction not only enables a categorisation of pathological scenarios, but also has the potential practical benefit that a software engineer can concentrate on key problematic scenarios. This may make it easier to either remove pathologies from an MSC specification MM or test an implementation developed from MM for potential problems resulting from such pathologies

    Purification of three rat atrial natriuretic factors and their amino acid composition

    Get PDF
    AbstractA natriuretic factor has been described in the specific granules of rat atria. We have purified three factors which seem to be low-Mr peptides. They have been purified by means of acid extraction, octadecyl Sep-Pak cartridges, and chromatography on Bio-Gel P-10, CM Bio-Gel A, Mono S and reverse-phase high-performance liquid chromatography columns. The factors contain 26, 31 and 33 amino acids and may have been partially degraded during isolation. They are all 3 biologically active and the shorter one is the most active with a specific activity of 450000 units/mg
    corecore