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Abstract

Context: It is known that a Message Sequence Chart (MSC) specification can contain different types of pathology.
However, definitions of different types of pathology and the problems caused by pathologies are unclear, let alone the
relationships between them. In this circumstance, it can be problematic for software engineers to accurately predict
the possible problems that may exist in implementations of MSC specifications and to trace back to the design prob-
lems in MSC specifications from the observed problems of an implementation.
Objective: We focus on generating a clearer view on MSC pathologies and building formal relationships between
pathologies and the problems that they may cause.
Method: By concentrating on the problems caused by pathologies, a categorisation of problems that a distributed
system may suffer is first introduced. We investigate the different types of problems and map them to a categories of
pathologies. Thus, existing concepts related to pathology are refined and necessary concepts in the pathology frame-
work are identified. Finally, we formally prove the relationships between the concepts in the framework.
Results: A pathology framework is established as desired based on a restriction that considers problematic scenarios
with a single undesirable event. In this framework, we define disjoint categories of both pathologies and the problems
caused; the identified types of pathology are successfully mapped to the problems that they may cause.
Conclusion: The framework achieved in this paper introduces taxonomies into and clarifies relationships between
concepts in research on MSC pathologies. The taxonomies and relationships in the framework can help software
engineers to predict problems and verify MSC specifications. The single undesirable event restriction not only en-
ables a categorisation of pathological scenarios, but also has the potential practical benefit that a software engineer
can concentrate on key problematic scenarios. This may make it easier to either remove pathologies from an MSC
specificationM or test an implementation developed fromM for potential problems resulting from such pathologies.
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1. Introduction

Message Sequence Charts (MSCs) are a specification
language suitable for describing the behaviour of dis-
tributed systems [1]. MSCs have become increasingly
popular in the telecommunication and software indus-
tries and are widely used for requirements analysis and
system design [2, 3, 4, 5, 6].

It is known that an MSC specificationM can contain
message interaction patterns that may introduce prob-
lems into the systems built from M. These patterns
are referred to as pathologies in the MSC research lit-
erature [7, 8]. Research has been conducted to inves-
tigate the different pathologies in MSCs, such as race

Email addresses: haitao.dan@brunel.ac.uk (Haitao Dan),
rob.hierons@brunel.ac.uk (Robert M. Hierons),
steve.counsell@brunel.ac.uk (Steve Counsell)

[9, 10, 11, 12, 13, 14], non-local choice [15, 16, 17],
implied scenarios [18, 19], implicit synchronisation [8],
confluence [8], process divergence [16], boundedness
[20], false-underspecification [7] and time inconsis-
tency [9, 21]. Pathologies introduced in the require-
ment and design stages can cause problems at runtime
such as deadlocks, synchronisation problems and com-
munication buffer overflow. Therefore, the analysis
of pathologies in MSCs can identify possible defects
at early stages of a system development process. For
example, it was reported that an MSC static analysis
tool specifically designed for detecting race and false-
underspecification, MINT, helped Motorola reduce ap-
praisal costs and improve productivity [22] and found
errors in approximately one out of five sequence dia-
grams in an early draft version of MOST [13]. Mooij
et al. reported that non-local choices were identified in
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IEEE Standard 1073.2 [23]. In addition, a well-know
MSC analysis tool, LTSA-MSC, has been successfully
applied to web service composition [24, 25].

However, there are no formal classifications of
pathologies and the relationships between the patholo-
gies and the problems that they caused in the litera-
ture. This may bring uncertainties into formal analysis
of MSCs. Using our experience as an example, our ini-
tial research topic was to tackle problems in distributed
testing with MSCs. We found that it was difficult to use
existing research results to support our research on dis-
tributed testing [26]. For example, from observed prob-
lematic test runs, we cannot infer the types of design
problem. In addition, we cannot relate an identified con-
trollability problem with an existing type of pathology.
Here, a controllability problem occurs in testing from
MSCs if the testers may not be able to ensure that the
input to the System Under Test (SUT) follows the given
test case when applied in a distributed test environment.
Examples 2 and 5, in Section 3, further explain control-
lability problems and how they relate to pathologies.

In this paper, we thus focus on clarifying the rela-
tionships between concepts related to pathologies. We
focus on MSCs that cause synchronisation problems in
part because of our interest in testing and the desire to
ensure that the SUT receives the expected sequence of
inputs. We argue that race and non-local choice are the
two main pathologies that cause synchronisation prob-
lems.

A pathology framework shown in Figure 1 is intro-
duced to describe relationships between the two types of
pathology and the scenarios with synchronisation prob-
lems. In the proposed framework, there are three exist-
ing concepts: race, non-local choice and implied scenar-
ios. We also introduce two new concepts: pathological
scenarios which are possible problematic scenarios that
are not described by MSC specifications and race sce-
narios which are a type of pathological scenario caused
by race. These two new concepts are circled of the dot-
ted line in Figure 1.

The proposed framework has two layers and relation-
ships are denoted by lines and arrows. At the upper
layer, there are two concepts: pathologies and patho-
logical scenarios. Pathologies in an MSC specification
M may lead to pathological scenarios in a system im-
plemented fromM. The “leads to” relationship is rep-
resented by an arrow from pathologies to pathological
scenarios in Figure 1. At the bottom layer, there are
race, non-local choice, race scenarios and implied sce-
narios. Race and non-local choice are two types of
pathology; race scenarios and implied scenarios are two
types of pathological scenarios that could result from

Pathologies Pathological Scenarios

Race

Non-local choice

Race scenarios

Implied scenarios

Upper 

layer

Bottom 

layer

Specification Implementation

Figure 1: Pathology framework of MSCs

using an MSC specification that has pathologies. The
“belongs to” relationship is represented by a line from
the upper layer to the bottom layer. All relationships
described in the figure are formally proven in the fol-
lowing sections.

Based on the standard semantics given in [1] and the
assumption that the underlying communication is asyn-
chronous, non-FIFO and has an individual buffer for
each channel, we achieve the following results in this
paper:

• Race and non-local choice are the two pathologies
that cause scenarios with synchronisation prob-
lems. Other identified issues in MSCs can be cat-
egorised into semantic errors, inconsistencies and
boundedness problems.

• Based on an assumption that we make which we
refer to as single undesirable event restriction, we
introduce the concept of pathological scenarios.
This clarifies the possible problematic scenarios
that pathologies may cause. The concept of patho-
logical scenarios reduces the number of problem-
atic scenarios that the software engineer needs to
consider. In addition, it enables the categorisation
of problematic scenarios caused by pathologies.

• We refine the definition of race in MSC specifica-
tions and introduce the concept of race scenarios.
We show that races cause race scenarios.

• We show that non-local choices cause implied sce-
narios and detecting non-local choices and solving
implied scenarios are identical problems.

• We prove that race and non-local choice are or-
thogonal types of pathologies and lead to different
type of pathological scenarios.

To conclude, the main contribution of this research is
the introduction of an MSC pathology framework. The
framework provides a clearer view on difficult issues in
MSC research. By understanding such relationships, we
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are in a better position to explore the identified patholo-
gies and resultant issues.

The remainder of this paper is organised as follows.
In the next section, we give preliminary definitions
of MSCs. Section 3 briefly introduces the identified
pathologies and the formal definitions of race, non-local
choice and implied scenarios. In Section 4, we propose
the concepts of pathological scenarios and pathology
free and then a taxonomy for pathological scenarios. We
then give the relationship between non-local choice and
implied scenarios based on our previous work (Section
5) [27]. In Section 6, a new definition of race in MSC
specifications is given. We then prove the relationship
between race and race scenarios. In Section 7, we com-
pare our race free condition with the traditional one [11]
and we discuss how to apply the framework to systems
with different types of communication. Finally, Section
8 presents conclusions.

2. Preliminaries

In this section, we give formal definitions of the core
concepts of MSCs. For a detailed description of MSCs,
the reader is referred to [1].

2.1. bMSCs

The annex B of the MSC standard [28] described
two approaches to interpret the meaning of a bMSC:
intuitive partial order based semantics and process al-
gebra based operational semantics. The partial or-
der described in a bMSC is also called visual order
which has been introduced in [9] and this approach
was used in most of the research on MSC pathologies
[7, 8, 9, 10, 11, 12, 13, 17, 18, 19, 20, 29]. In this paper,
we adopt the visual order approach.

Definition 1. (bMSCs) An bMSC M is a tuple
〈E,C,P, l,msg, <〉 where: E is a set of events, C is a
message alphabet and P =

⋃n
i=1 Pi is a set of processes;

E is partitioned into a set S of send events and a set R
of receive events, E = S ∪ R; l : E 7→ A is a labelling
function andA = AS ∪AR whereAS = {send(i, j, a) :
1 ≤ i, j ≤ n ∧ a ∈ C} is the set of sending of messages
andAR = {receive(i, j,m) : 1 ≤ i, j ≤ n ∧ m ∈ C} is the
set of receiving of messages; send(i, j,m) represents the
sending of message m from Pi to P j and receive(i, j,m)
the receiving of the corresponding message1; Ai rep-
resents the set of labels on process Pi; msg : S 7→ R

1We will use !m and ?m as abbreviations of send(i, j,m) and
receive(i, j,m), respectively, where i, j are clear.

is a bijection between send and receive events, match-
ing each send with its corresponding receive; the inverse
mapping is msg−1 : R 7→ S between receive and send
events; there is a helper mapping p : E 7→ [1, n] that
maps each event e ∈ E to the index of the process on
which e occurs; for each 1 ≤ i ≤ n, a total order <i

on the events of process Pi, i.e., on the elements of
p−1(i), such that the transitive closure of the relation
< =̇
⋃

1≤i≤n <i ∪ {(s,msg(s)) : s ∈ S } is a partial or-
der on E, namely, visual order (<∗). Note that, since <i

is a total order, it is antisymmetric.

In the literature, partial order semantics is often used
accompanied with trace semantics [7, 11, 12, 18, 30,
31]. For simplifying trace semantics, two assump-
tions are generally made. For a message m we restrict
p(!m) , p(?m) which means that messages sent and re-
ceived by the same process are not considered. In addi-
tion, we assume that the non-degeneracy condition, also
called weak-FIFO, is satisfied. Non-degeneracy means
that degenerate MSCs are not allowed. An MSC is de-
generate if two send events e1 and e2 exist such that
l(e1) = l(e2), e1 < e2 and msg(e2) < msg(e1).

The trace semantics can be described as follows.
Given a bMSC M, a word of M is a string w = w1 · · ·w|E|
over A if and only if there exists a total order e1 · · · e|E|
of the events in E such that whenever ei <

∗ e j we have
i < j, and for 1 ≤ i ≤ |E|, wi = l(ei). Conversely, a
well-formed and complete word uniquely characterises
a bMSC. A word is well-formed if all of its receive
events have earlier matching sends and a word w is com-
plete if all send events have matching receives. A bMSC
M describes a set of well-formed and complete words
and the set of words is the language of the bMSC, de-
noted as L(M). We use pre f (w) and pre f (L) to denote
the set of prefixes of word w and the set of prefixes of
language L, respectively.

2.2. MSC specifications
There are different approaches to organising MSC

specifications. The most popular ones used in dis-
cussing pathologies are High-level MSCs (HMSCs)
[8, 16, 19, 20, 21, 23, 29] and MSC Graph (MSG)
[11, 17, 20, 32, 31]. Generally speaking, MSGs are a
simpler version of HMSCs. Both are formalised to a
graph with nodes labelled by MSCs. The differences
are that HMSCs support parallel composition and al-
low their nodes to be labelled by other HMSCs. In fact,
a number of research studies based on HMSCs do not
consider parallel composition [16, 19, 20, 21, 23, 29].
The semantics of an HMSC or an MSG depends heav-
ily on how to interpret the concatenation of two bMSCs
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where weak sequencing [33] was adopted by most of the
research on pathologies [7, 8, 11, 16, 20, 21, 32, 31].
Weak sequencing means that the individual processes
of bMSCs are concatenated and there is no synchroni-
sation at concatenation points between bMSCs. There-
fore, the additional visual orders in the synthesised
bMSC are only formed by the event pairs in which one
event from the first bMSC and the other from the sec-
ond bMSC and both events happen on the same process.
Consequently, in a weak sequencing of two bMSCs M1
and M2, events from M2 may be executed before events
from M1. The semantics of an HMSC or MSG is given
by the weak sequencing of the nodes on the paths of the
HMSC/MSG and this leads to a set of bMSCs. We note
that the set of bMSCs can be infinite due to the loop
structure in the graph. In addition, the language rep-
resented by an MSC specification can be non-regular
even without considering parallel composition in HM-
SCs [32, 20, 34].

The other approach to describe an MSC specification
is by directly considering a specification as a set of bM-
SCs [18, 30]. In this paper, we follow this approach. It
is clear that an HMSC/MSG defines a set of bMSCs.
Therefore, the results in this paper can be applied to
MSC specifications described by HMSCs and MSGs.
We define the semantics of an MSC specification to be
the language of the specification.

Definition 2. (Language of MSC Specifications) For
an MSC specification M, the language of M, L(M),
is the union of the sets of words of all bMSCs in M,
L(M) =

⋃
M∈M L(M). L(M) is regarded as the seman-

tics ofM.

Accordingly, we say that bMSC M is a member
bMSC ofM if L(M) ⊆ L(M).

In a bMSC, the behaviour of a process is modelled by
a totally ordered sequence of events corresponding to a
single word on labels. For an MSC specification, be-
haviours of process Pi are captured by the projection of
the language L(M) on Pi, denoted as L(M)|Pi, namely
the process language.

3. Pathologies in MSCs

In this section, we briefly introduce pathologies iden-
tified in the literature. We categories these pathologies
into four types. The first three types do not cause syn-
chronisation problems but the last one does. We show
that different groups of researchers have considered dif-
ferent aspects of the same pathologies. We then focus
on race, non-local choice and implied scenarios, which

are concepts related to synchronisation problems, and
give formal definitions to these concepts.

3.1. Categorisation of identified pathologies

Existing research on MSC pathologies has been con-
ducted by different researchers: once a problematic
message interaction pattern has been identified, it is
tackled. However, the relationships between the types
of pathology have not been formally analysed. In fact,
the types of pathology previously mentioned in Section
1 can be categorised by the types of problems that they
may cause.

Semantic errors: implicit synchronisation and conflu-
ence [8]. Both are caused by misunderstandings of
the semantics of specific constructs of MSCs and
lead to wrong specifications because of the differ-
ences between semantics and designers’ intention.

Inconsistencies: time inconsistency [9, 21] and false-
under specifications [7]. Time inconsistencies are
conflicts between the visual orders and time con-
straints or between different sets of time con-
straints; false-under specifications are conflicts be-
tween visual orders and general orders manually
added by designers.

Boundedness problems: divergence [16], model
checking problem [20, 34], synthesis problem
[19, 34, 35, 36, 37, 30] and non-regularity [32].
Although they are slightly different problems,
we group them together since an unbounded
communication pattern in a loop structure in
HMSCs causes all these problems. An unbounded
communication pattern may lead to a situation
in which there is no bound on the number of
messages that have been sent but not yet received.
For the research on divergence, this results in
problems at runtime since a network will have a
bound on its capacity. From the model checking
problem point of view, this communication pattern
makes the model checking problem for HMSCs
undecidable. The synthesis problem generally
is to determine whether an MSC specification
implements a state-based model. An unbounded
pattern makes this problem undecidable. Finally,
it was also shown that an HMSC represents a
non-regular language if there is an unbounded
communication pattern.

Synchronisation problems: races [9, 10, 11, 12], non-
local choices [15, 16, 17] and implied scenarios
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[18, 19, 29]. Race and non-local choice lead to un-
desirable scenarios that violate the order of events
described in an MSC specification. It was shown
that they are hard to tackle and cause runtime prob-
lems in real implementations. For the three is-
sues, the literature contains apparently contradic-
tory statements and some concepts overlap. For
example, it has been said that “an implied scenario
is due to a non-local choice situation” [29] and also
that “non-local choices are implied scenarios; the
converse is not the case” [19]. A second example
is that, as shown later, an MSC specification that is
not race free under the definition given in [11] may
cause implied scenarios but not race scenarios. In
addition, there are multiple non-local choice def-
initions and they are not equivalent [15, 16, 27].
Ladkin and Leue first identified non-local choice in
[15], but no formal definition was given. The idea
of non-local choice was then refined with both se-
mantic and syntactic definitions in [16]. These def-
initions depend on the explicit branch structure in
HMSCs. In [27], non-local choice was defined as a
sub-type of choice on a process so that the branch
structure in the HMSC is no longer required for
the existence of non-local choice in an MSC spec-
ification. Therefore, it is a more general formalisa-
tion of non-local choice. One way of simplifying
the situation is to adopt a unified approach to con-
ducting research on MSC pathologies. This should
clarify relationships between concepts in MSC re-
lated research such as race, non-local choice and
implied scenarios and explain apparently contra-
dictory statements and observations in the litera-
ture.

3.2. Concepts related to synchronisation problems

In this section, three complex issues in MSCs are in-
troduced: race, non-local choice and implied scenarios.

Race
Race was originally defined as a discrepancy between

two orders: visual order and enforced order [9]. Visual
order is defined by the semantics, but enforced order
may change over implementations since enforced or-
der depends on causalities described by for example,
the MSC specification or the underlying communication
system [9, 38].

For the sake of simplicity, race will be investigated
based on basic enforced orders. This means that en-
forced orders are introduced by only two types of
causality following the happened before relation given

P1 P3P2

a

b

M1
P1 P3P2

a

c

M2

Figure 2: Race

in [39]: the sending of a message always being before
the receiving of the same message and a send event
on some process always being after the events visually
above it on the same process. The second type of causal-
ity is based on an assumption that subsystems follow
their local behaviour specifications which are process
languages in terms of MSC specifications. We will call
this the sensible local behaviour assumption. The mo-
tivation is that MSC specifications concentrate on syn-
chronisation between subsystems. To analyse synchro-
nisation problems, it is better to isolate them from local
system errors. Actually, let us assume that communica-
tion between processes is asynchronous and non-FIFO
and each channel has an independent buffer that is un-
bounded as in [9, 11, 12], no order will be further en-
forced or reduced between events in bMSCs by the un-
derlying communication system.

The enforced order of a bMSC is defined as follows:

Definition 3. (Enforced Order) Given a bMSC M
with set E of events, the transitive closure of the rela-
tion, � =̇ {(x, y) ∈< : y = msg(x) ∨ (y ∈ S ∧ p(x) =

p(y))}, is a partial order on E, namely the enforced or-
der.

Therefore, race and race free in a bMSC are defined
as follows.

Definition 4. (Race in a bMSC) Events e and f from
process P in bMSC M are said to be in a race, denoted
as [e, f ], if e <∗ f but not e �∗ f . We say that M is
race free, if M contains no races.

Example 1. (Race) Consider MSC M1 given in Figure
2. Processes P1 and P3 should send messages a and b
respectively to process P2. According to M1, message
a should arrive before message b. However, it is pos-
sible that P1 and P3 send their messages as desired but
b arrives at P2 before a in an execution. According to
the definition, there is a race [?a, ?b] in bMSC M1 since
?a <∗?b but ?a 3∗?b. Another example is given in M2
shown in the same figure. In this example, two mes-
sages are sent from P1. As described in M2, a should
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M2

a
b

M1

P1 P4P2 P3P1 P4P2 P3

Figure 3: Choice with terminations

arrive before c. The problem is that c may overtake a
in a real run. There is a race [?a, ?c] since ?a <∗?c but
?a 3∗?c in the second example.

Races may cause different types of problems in a soft-
ware engineering process. In the context of testing with
MSCs, a race may lead to controllability problems of
timing [26].

Example 2. (Race and testing) Let us suppose that M1
in Figure 2 describes a test case where P1 and P3 in the
bMSC are two testers and P2 is the SUT. Race [?a, ?b]
implies that there are controllability problems for testers
P1 and P3 since they cannot decide when to send mes-
sages a and b to ensure that the two messages arrive at
the SUT as shown in M1.

Non-local choice
Non-local choice can be described as a choice that

depends on information from other processes, but the
information is not accessible due to the local assump-
tion. Here, the local assumption is that a process is pre-
vented from directly accessing the status of other pro-
cesses. Generally, a choice is between two event labels.
There is a special case that a choice may happen be-
tween the termination of a process and an event label.

Example 3. (Choice with a termination of process)
Consider MSC specification M1 with two member
MSCs M1 and M2 shown in Figure 3. Both processes
P1 and P3 have a choice as to whether to send a mes-
sage or terminate the processes directly.

To explicitly describe choices between the termina-
tion of a process and other events, we include termina-
tions into the alphabet of MSC languages [27] and so
L′ is used to denote the MSC language extended with
an alphabet of terminations of processes, represented by
↓P= {↓i: Pi ∈ P}.

In this paper, we define choice on local behaviours.
A choice represents the alternative next behaviours that
can be chosen for a process after some execution steps
if the MSC specification contains multiple member bM-
SCs. The formal definition of choice is as follows.

a

P1 P2 P3

M1

b c

P1 P2 P3

M2

b

Figure 4: Non-local choice

Definition 5. (Choice [27]) Given an MSC specifica-
tionM, a choice on Pi is a triple (w, x, y), where w ∈
pre f (L′(M)|Pi), x, y ∈ Ai ∪ ↓i and x , y such that
wx,wy ∈ pre f (L′(M)|Pi).

Non-local choice is thus a subtype of choice. The for-
mal definition of non-local choices based on Definition
5 is as follows.

Definition 6. (Non-local Choice [27]) Given an MSC
specificationM, a non-local choice is a choice (w, x, y)
on Pi, such that there exists a word v ∈ pre f (L′(M)),
where v|Pi = w, vx ∈ pre f (L′(M)), vy is well-formed
and vy < pre f (L′(M)). We say that M is non-local
choice free, ifM contains no non-local choices.

Example 4. (Non-local choice) Consider an MSC
specification M2 with two bMSCs M1 and M2 shown
in Figure 4. There is a non-local choice (ε, ?c, !a) on
P1 since we can find !b?b!c?c ∈ pre f (L(M1)) but
!b?b!c!a < pre f (L(M2)).

A correctly implemented distributed system is based
on properly implemented subsystems. However, the
non-local choice pathology implies that it is not suffi-
cient to have correctly implemented subsystems since
these can lead to additional behaviours that are not in the
specification. In the context of testing from MSCs, non-
local choice causes controllability problems of choice
[26].

Example 5. (Non-local choice and testing) Let us
suppose that MSC specification M2 describes a test
case where P1 and P3 are two testers and P2 is the
SUT. Non-local choice (ε, ?c, !a) leads to a controlla-
bility problem regarding whether tester P1 should send
message a or wait for the incoming message c.

Implied scenarios
The concept of implied scenario was defined by Alur

et al. [18]. According to [18, 19], the synthesised model
from an MSC specification may exhibit additional be-
haviours which are not described by the original speci-
fication even though each process follows its local spec-
ification. In addition, an MSC specificationM is said to
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P1 P2 P3
M1

b

a

Figure 5: Implied scenario ofM2

be safely realisable if and only if there exists a synthe-
sised model whose behaviour contains no implied sce-
narios which may be in deadlock [18].

Example 6. (Implied Scenarios) For example, recon-
sider MSC specification M2 with the two bMSCs M1
and M2 shown in Figure 4,M2 leads to an implied sce-
nario M1 given in Figure 5, because the sending of a
and receiving of b are consistent with the process be-
haviours, but the overall behaviour violatesM2.2 Note
that M1 in Figure 5 also represents a word in which the
sending of a happens before the receiving of b. In this
case, it is still an implied scenario.

The additional behaviours shown in the example are
implied scenarios which can be formalised as follows.

Definition 7. (Implied Scenarios [27]) w represents an
implied scenario of MSC specification M if w is a
well-formed word and for each w|Pi i ∈ [n], a word
v ∈ pre f (L′(M)) exists such that w|Pi = v|Pi, but
w < pre f (L′(M)).

Definition 7 is from a previous study by the authors
[27] and is consistent with the concept of safe realis-
ability of Alur et al. [18, 32]. It is worth noting that the
introduction of the termination alphabet helps to capture
a special type of implied scenario.

Example 7. (Implied Scenario with termination al-
phabet) For example, reconsider MSC specification
M1 with two bMSCs M1 and M2 shown in Figure 3. M2
can then be described as word ↓1↓2↓3↓4. M1 in Figure 6
can be described as !a?a ↓3↓4↓1↓2 and is an implied sce-
nario ofM1 since each projection of M1 in Figure 6 on
a process follows the corresponding process behaviour
ofM1.

Definition 7 considers prefixes of L′(M) because the
implied scenarios may lead to deadlock [18].

2The half arrows shown in Figure 5 and other figures in this paper
represent the sending of messages. We note that this is not a standard
construct but it is an ideal way to visualise the prefix of a trace which
is often used in the literature.

M1

a

P1 P4P2 P3

Figure 6: Implied scenario ofM1

P1 P2

a

M1
P1 P2

d

M2
P1 P2

a d

M3

b c

Figure 7: Implied scenario with deadlock

Example 8. (Deadlock) For example, consider MSC
specification M3 with member bMSCs M1 and M2
shown in Figure 7. They imply a new scenario M3 in
which the two processes start by sending each other con-
flicting messages leading to the scenario of deadlock.

Definition 7 is different from the implied scenario in
[19] in which synchronous communication is applied.
The implied scenarios with deadlock given in the exam-
ple do not happen with synchronous communication.

In addition, it has been shown that checking weak re-
alisability (without considering the possibility of dead-
lock) is even more difficult than checking safe realis-
ability [18].

4. Pathological scenarios

Pathologies in MSC specifications are described as
defects in MSC specifications [7]. In this section, we in-
troduce a new concept: pathological scenarios. Patho-
logical scenarios are problematic behaviours of imple-
mented systems caused by ‘defects’ in MSC specifica-
tions with the single undesirable event restriction. It
is worth noting that the relationship between patholo-
gies and pathological scenarios is similar to the concepts
‘fault’ and ‘failure’ in software testing.

Intuitively, we may think that an observed scenario of
an implementation from an MSC specification is prob-
lematic if it is not consistent with the specification. For-
mally, problematic scenarios are defined as follows.

Definition 8. (Problematic scenarios) Let us use a
word w and M to represent the observed scenario and
the MSC specification, w is a problematic scenario if
w < pre f (L(M)). An observed scenario w violates
specificationM if w is a problematic scenario.
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A distributed system may continue to run until all
subsystems realise that a problem has occurred. There
is a possibility that no subsystem can realise a prob-
lem has occurred since the problematic execution can
be correct for each subsystem locally. This means that a
problematic scenario may contain multiple undesirable
events. If these undesirable events are caused by dif-
ferent pathologies and interleave each other, two issues
may be introduced into the software engineering pro-
cess. First, engineers may have to spend more time on
tracing back the design problems. Second, taxonomies
on both problematic scenarios and pathologies cannot
been formally introduced. This may bring complexities
into develop a tool to accurately find design problems
in specifications or from observed scenarios. Examples
are given for further explanations after the introduction
of definitions.

A better solution is to consider the prefixes of prob-
lematic scenarios which contain only one undesirable
event violating the specification. We call the problem-
atic scenarios with this restriction pathological scenar-
ios. The restriction is referred to as single undesirable
event restriction.

The formal definition of a pathological scenario is
given as follows.

Definition 9. (Pathological Scenario) wa, where a =

l( f ) and f is an event on Pi, represents a pathological
scenario ofM, if w ∈ pre f (L(M)) such that wa is well-
formed and wa < pre f (L(M)).

In this definition, wa should be well-formed since a
pathological scenario is a problematic scenario. The
word representing a problematic scenario should be a
possible observation of a real run. Formally, let S be
the set of problematic scenarios. The set of pathological
scenarios, S ′, is thus a subset of S . For each scenario
s ∈ S , an s′ ∈ S ′ can always be found such that s = s′x
where x is a word on the given alphabet. Thus, crucially,
the restriction to an undesirable event has the property
that for a given MSC specification S is empty if and
only if S ′ is empty.

In this paper, we investigate pathologies that eventu-
ally lead to pathological scenarios. Therefore, we say
that an MSC specification is pathology free if an imple-
mentation of an MSC specification cannot cause patho-
logical scenarios under the sensible local behaviour as-
sumption. We thus have the following definition.

Definition 10. (Pathology Free) An MSC specifica-
tionM is pathology free if for all w ∈ pre f (L(M)) and
f ∈ E such that word wa where a = l( f ) is well-formed

and satisfies the sensible local behaviour assumption,
we have that wa ∈ pre f (L(M)).

This definition states that any possible successive event
of word w according to the local behaviour specifica-
tions should form a valid prefix of the specification with
w. Consequently, we have the following proposition,
since pathology free is based on pathological scenarios.

Proposition 1. Under the the sensible local behaviour
assumption, an MSC specificationM is pathology free
if and only ifM has no pathological scenarios.

Proof. This proposition follows from Definitions 9 and
10. �

In devising a formal taxonomy on pathological sce-
narios, the property of event label a in a pathological
scenario is important since this is the only difference
between a pathological scenario and the valid prefix of
a scenario. One obvious property of a is that it may rep-
resent the sending or receiving of a message. The other
property is that, suppose that a happens on process Pi,
it may or may not violate the local behaviour L(M)|Pi.
Based on the two properties, pathological scenarios can
be divided into four categories.

1. a ∈ AR and wa|Pi ∈ pre f (L(M))|Pi;
2. a ∈ AS and wa|Pi ∈ pre f (L(M))|Pi;
3. a ∈ AR and wa|Pi < pre f (L(M))|Pi;
4. a ∈ AS and wa|Pi < pre f (L(M))|Pi.

The fourth category of problematic scenarios are ac-
tually caused by implementation problems in subsys-
tems since it requires an unspecified send event. Gener-
ally, the sensible local behaviour assumption should be
satisfied when discussing coordination between subsys-
tems based on MSC specifications as explained in Sec-
tion 3.2. With the sensible local behaviour assumption,
the fourth category of pathological scenarios is invalid.

Comparing the first two categories of pathologi-
cal scenarios and Definition 7, we have the following
proposition.

Proposition 2. If w represents a pathological scenario
of MSC specification M and for each projection of w,
w|Pi ∈ pre f (L(M))|Pi then w represents an implied sce-
nario.

Proof. This proposition follows from Definition 7 and
Definition 9. �

8
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Figure 8: Race scenario

However, by definition, not all implied scenarios
are pathological scenarios, since implied scenarios may
contain more than one event that violates the specifica-
tion.

The third category of pathological scenarios says a is
a receive event and the local behaviour is violated by a.
Actually, this means that a overtakes some events since
wa is well-formed. This is consistent with the informal
description of the scenarios caused by race in [9]. Here,
we give a formal definition of scenarios caused by races.

Definition 11. (Race Scenario) wa, where a = l( f )
and f is an event on Pi, represents a race scenario of
M if wa is well-formed, w ∈ pre f (L(M)), f ∈ R and
wa | Pi < pre f (L(M)|Pi).

Example 9. (Race Scenario) Consider an MSC speci-
fication M4 with only one bMSC M1 shown in Figure
8. This MSC specification leads to race scenarios. Ac-
cording to our definition, M2 given in the same figure is
a race scenario ofM4 since the receiving of b violates
the specification.

We note that a race scenario of a member bMSC may
be a valid prefix of the specification. More interestingly,
a race scenario of a member bMSC can be an implied
scenario of the specification.

Example 10. (Race scenario or implied scenario) For
MSC specification M4 with only one member bMSC
M1 given in Figure 8, M2 in the same figure is a race
scenario caused by the race in M1. For an MSC specifi-
cationM2 with two bMSCs M1 and M2 shown in Fig-
ure 4, although M1 of M2 is the same as M1 of M4,
M2 in Figure 8 is no longer a pathological scenario of
M2 in Figure 4, because it is a prefix of M2 in Figure 4.
However,M2 is not pathology free since it leads to an
implied scenario M4 in Figure 5.

In the example, M2 in Figure 8 and its extension M4
in Figure 5 can be valid scenarios, race scenarios or im-
plied scenarios in terms of different MSC specifications.
However, one word cannot represent both a race sce-
nario and an implied scenario of a specific MSC specifi-
cation. Comparing definitions of pathological scenario,

P1 P2 P3
M1

b

a

Figure 9: Race scenario or implied scenario

race scenario and implied scenario, we have the follow-
ing proposition.

Proposition 3. The set of implied scenarios IS with
only one undesirable event and the race scenarios RS
of MSC specification M describe different behaviours,
L(IS ) ∩ L(RS ) = ∅; the set of pathological scenarios
PS ofM equals RS ∪ IS .

Proof. For the first part of the proposition, according to
the definition of race scenarios, race scenarios always
have a process behaviour on some Pi that is inconsistent
with the process language defined byM. According to
the definition of implied scenarios, an implied scenario
has all process behaviours conforming to the process
languages of specificationM. Consequently, an implied
scenario and a race scenario cannot be described by the
same word.

The second part of the proposition follows the defini-
tion of pathological scenario, race scenario and implied
scenario with the sensible local behaviour assumption.
�

Since race scenarios and a taxonomy on pathological
scenarios have been introduced based on the single un-
desirable event restriction, we can give examples to il-
lustrate conversely how the single undesirable event re-
striction helps to clarify the relationship between patho-
logical, race and implied scenarios.

Example 11. (Single undesirable event restriction
and problematic scenario 1) Let us consider problem-
atic scenario M1 shown in Figure 9. ForM4 with only
M1 given in Figure 8, this may be considered to be a
race scenario if we do not restrict attention to cases in-
volving a single undesirable event; in fact, it is just an
extension of a race scenario M2 in Figure 8 since the
receiving of b already violates the behaviour of P2.

ForM2 with two bMSCs given in Figure 4, it is diffi-
cult to decide whether M1 in Figure 9 is a race scenario
or an implied scenario if we do not use the single unde-
sirable event restriction. It can be a race scenario, since
the behaviour on P2 violates the specification. However,

9
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Figure 10: Single undesirable event restriction

it can also be an implied scenario, because M1 in Fig-
ure 9 is a complete version of M1 in Figure 5 which is
already an implied scenario.

Example 12. (Single undesirable event restriction
and problematic scenario 2) More interestingly, con-
sider an MSC specificationM5 with bMSC M1 and M2
shown in Figure 10. M3 in the same figure obviously de-
scribes problematic scenarios with multiple undesirable
events. Both events !e and ?b are undesirable. Since
there is no visual order defined between !e and ?b in
M3, they can show up in either way. In other words,
both !b!e and !b?b can be prefixes of the scenarios de-
scribed in M3. If the observed scenario is !b!e which
can be visualised as bMSC M4 in the same figure, !b!e
is an implied scenario since all its projections satisfy the
local behaviour specifications. If the observed scenario
is !b?b in which ?b comes first as bMSC M2 given in
Figure 8, it is a race scenario since the behaviour on P2
is not described in specificationM5.

The last two examples show that if we consider mul-
tiple undesirable events in a pathological scenario, mul-
tiple types of violations may exist at the same time.
Pathological scenarios therefore cannot be uniquely
classified.

There is another benefit from introducing the single
undesirable event restriction: by considering only one
event, (potentially exponentially) fewer scenarios need
to be investigated when trying to compute the set of
pathological scenarios of an MSC specification.

Example 13. (Problematic scenario explosion) Con-
sider bMSC M1 in Figure 11 in which there are n mes-
sages sent from P1 to P2 and n messages sent from P3
to P2. There are 2n!

2!(2n−2)! = n(2n − 1) races in M1 but
2n!/2 − 1 problematic scenarios may be observed if we
consider that every scenario contains all the events in
M1.

P1 P2 P3
M1

b1

a1...

an

bn

...

Figure 11: Exponentially many pathological scenarios

If such a restriction is not used then there may be
little value in returning the set of problematic scenar-
ios to the software engineer: there may be too many
such scenarios and most may be formed from different
combinations of a set of potential synchronisation prob-
lems. If the number of pathological scenarios is not too
large then this set might be used to show what synchro-
nisation problems might occur when developing an im-
plementation from the given MSC specification and it
might also be used as the basis of a test suite that aims
to determine whether any of these synchronisation prob-
lems have occurred in the actual implementation.

5. Non-local choice and implied scenarios

In this section, we explore the relationships between
non-local choice and implied scenarios. According to
Alur et al. [18], the following two Closure Conditions
(CCs) can be used to determine whether an MSC spec-
ification contains implied scenarios.3 We note that the
two CCs were defined on the alphabet without termina-
tions.

CC 1. For all w, v ∈ pre f (L(M)), if w|Pi = v|Pi for
some process Pi, wx ∈ pre f (L(M)) and vx is well-
formed for some x on Pi, then vx is in pre f (L(M)).

CC 1 considers two possible prefixes of specification
M, w, v. If process Pi cannot distinguish w and v from
its local view and x on Pi is a valid continuation of w
but not for v, then vx is an implied scenario.

CC 2. Given a well-formed and complete word w ∈
pre f (L(M)), if for all Pi, 1 ≤ i ≤ n, there exists a word
vi ∈ L(M) such that w|Pi = vi|Pi, then w is in L(M).

CC 2 means that a prefix w of a specification lan-
guage, L(M), is an implied scenario if w is not a word

3The two closure conditions were named CC2’ and CC3’ in [18].
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of L(M) and for any projection of w, a word of L(M)
can be found with an equal projection. It is a comple-
ment to CC 1 for capturing a specific type of implied
scenarios where some processes of such an implied sce-
nario terminated earlier than expected.

Example 14. (Implied scenarios captured by CC 2)
Consider again the MSC specification M1 with two

member bMSCs given in Figure 3. As shown in the ex-
ample after Definition 7, scenario M1 from Figure 6 is
an implied scenario of M1 and M1 can be represented
by the word !a?a. If we do not include symbols repre-
senting terminations into the alphabet then M1 cannot
be classified as an implied scenario on the basis of CC1
since !a?a is a prefix of a word in L(M1). However,
!a?a is a prefix of a word in L(M1) but is not in L(M1)
and so is an implied scenario. This type of implied sce-
nario is captured by condition CC2.

As mentioned in Section 3.1, there are contradictory
statements on the relationship between non-local choice
and implied scenarios in the literature. The inconsis-
tency between [29] and [19] has been pointed out in
[17], but it does not provide a formal analysis of this
topic. Finally, in a previous paper [27], we showed that
Alur’s CCs for safe realisability captures all non-local
choices. This is stated in the following two propositions
proven in [27].

Proposition 4. Given an MSC specification M, a lan-
guage L(M) is safely realisable if and only ifM is non-
local choice-free.

Proposition 5. If an implied scenario can be caused by
an MSC specification, then it corresponds to a non-local
choice in that specification.

Based on Propositions 4 and 5, it is easy to see that
non-local choices in MSC specifications lead to implied
scenarios. This is stated in the following proposition.

Proposition 6. An MSC specification is non-local
choice free if and only if it does not lead to implied sce-
narios.

Proof. This proposition follows Proposition 4 since
safely realisable meansM leads to no implied scenario.
�

6. Race and race scenarios

In this section, we discuss the relationship between
race and race scenarios in MSC specifications. In Alur

et al. [9], race was defined based on a bMSC. However,
there are issues if we reuse the original definition for
race in MSC specifications. First, the races of an MSC
specification are not the union of races in the member
bMSCs. Second, race should be a category of patholo-
gies which, ideally, cause a specific type of patholog-
ical scenario. Therefore, to prove the relationship be-
tween race and race scenarios, a definition of race in
MSC specifications is necessary. We thus first develop
a race free condition based on the concept of race sce-
narios of bMSC. Based on the enhanced condition, new
definitions of race and race free in MSC specifications
can thus be derived.

6.1. Race in bMSC
In addition to Definition 4, there are two other con-

ditions for race free of bMSC in [9, 10], respectively.
They are stated in Propositions 7 and 8 as properties of
the definition of race free given in Definition 4. The
enforced order �∗ of bMSC M corresponds to a set of
words on the same alphabet as L(M). We denote the
language corresponding to�∗ of M as Len(M).

Proposition 7. A bMSC M is race free if and only if
L(M) = Len(M).

Proof. This proposition follows Definition 4. This is
because M is race free if and only if M contains no races
and this corresponds to the visual order being equal to
the enforced order in M. �

Proposition 8 was given as a definition of race free to
show how to detect races in a bMSC using only a part
of the bMSC [10].

Proposition 8. A bMSC M with alphabetA is race free
if and only if for every event x and message m, such that
x, !m, ?m ∈ E,

x <∗?m⇒ (x <∗!m ∨ x =!m).4

Proof. To prove this proposition, we will use Proposi-
tion 9.

For the forward direction, we use proof by contradic-
tion. Let us suppose that M is race free but there is an x
such that x <∗?m, x ,!m, and ¬(x <∗!m). According to
Proposition 9, we have ¬(x �∗!m) and so ¬(x �∗?m).
This means that L(M) , Len(M) and this contradicts the
assumption. The forward direction is established.

4Here, !m is not an event, but the label of an event. For simplic-
ity, we use labels with events when there is a bijection between the
specific sets of labels and events.
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For the converse direction, let us suppose that for ev-
ery event x in M, x <∗?m ⇒ (x <∗!m ∨ x =!m). We
show that M is race free. Obviously, race is formed by
a pair of events where the second one is a receive event.
Let x and ?m be a such pair of events. x <∗?m ⇒ (x <∗

!m ∨ x =!m) means that, for any such pair of events, we
have x <∗!m. According to Proposition 9, we also have
x �∗!m. Therefore, x �∗?m and the converse direction
is established. �

Proposition 9. Let e, f be two events in a bMSC such
that f ∈ S and p(e) , p( f ). e <∗ f if and only if
e �∗ f .

Proof. For the forward direction, let us suppose that
p(e) = i and p( f ) = j. The visual order between dif-
ferent processes is only introduced by message event
pairs (the sending and receiving of messages) and the
orders between sending and receiving of messages are
enforced orders. We can always find a set of messages
passing the enforced order from Pi to P j visually after
e and before f . Moreover, because f is a send event,
according to the definition of enforced order, e �∗ f .

The converse direction follows immediately since the
enforced order is a subset of the visual order. �

Considering the race definition of a bMSC with the
framework introduced in Section 4, the following rela-
tionship exists between race and race scenario.

Proposition 10. A bMSC M is race free if and only if it
leads to no race scenarios.

Proof. For the forward direction, we will use proof
by contradiction. Let us assume that M is a race free
bMSC. Assume also that we can find a race scenario
M′ which can be derived from M. According to Def-
inition 11, there is a word wa, where a = l( f ) which
represents M′, such that f is in some process Pi, f ∈ R,
wa is well-formed and w ∈ pre f (L(M)) but wa|Pi <
pre f (L(M))|Pi. This means that the next event on Pi

following w|Pi cannot be f . Since w is well-formed,
f must happen in M and there is a sequence of events
α , ε between the last event of w|Pi and f . Let us
suppose that the first event in α is e. Obviously, e cor-
responds to a letter after w. Since wa is well-formed,
the letter corresponding to msg−1( f ) is in w. Therefore,
¬(e <∗ msg−1( f )). This means that ¬(e �∗ f ) accord-
ing to Proposition 9. Therefore, [e, f ] forms a race in
M. This contradicts the assumption that M is race free.
The forward direction is established.

For the converse direction, we will also use proof by
contradiction. Assume that M does not lead to race

scenarios, but there is a race [e, f ] on process Pi of
M. We thus construct a new bMSC M′′ from M by
placing f before e and removing all events x such that
¬(x <∗ f ). It is clear that for each process P j such
that j , i, L(M′′)|P j ∈ pre f (L(M))|P j and also that
L(M′′)|Pi < pre f (L(M))|Pi. M′′ is thus a race scenario.
This gives a contradiction as required. �

This proposition means that, to avoid race scenarios,
for a bMSC it is sufficient to remove all races. This
is the motivation for race detection at the requirements
stage. Moreover, it shows that a race scenario of a
bMSC can always be constructed from a detected race.
The technique for constructing race scenarios is called
Race Scenario Construction (RSC) in this paper. Let us
suppose that [e, f ] is a race on process P of bMSC M;
RSC constructs a race scenario M′ by placing f before
e and removing all events x such that ¬(x <∗ f ). We
call M′ the race scenario of [e, f ].

Example 15. (RSC) For example, we can construct a
race scenario from bMSC M1 shown in Figure 8 in
which [?a, ?b] is a race on P2. First, ?b is placed before
?a, and scenario M1 in Figure 9 is constructed; second,
all the events x : ¬(x <∗?b) in M1 of Figure 9 are re-
moved; the resultant M2 in Figure 8 is the race scenario
of [?a, ?b].

6.2. Race in MSC specifications
We have seen that in a bMSC, race and race scenarios

are related as stated in Proposition 10. If we follow the
original definition of race in [9] and define the the union
of races in each member bMSC as races of MSC speci-
fications, the relationship between race and race scenar-
ios will not hold in some MSC specifications because
not every race in a member bMSC leads to a race sce-
nario.

Example 16. (Race scenarios or not) For example,
consider MSC specification M6 with three member
bMSC M1, M2 and M3 shown in Figure 12. M4 and M5
are race scenarios of bMSC M1, but they are prefixes
of member bMSCs M2 and M3. Therefore, M4 and M5
are not race scenarios ofM6. M6 is a race scenario of
M2 and is not a prefix of any member bMSC, but it is
still not a race scenario of M6. This is because each
projection of M6 is a prefix of the corresponding pro-
cess language ofM6 and so M6 is an implied scenario
ofM6.

This also shows that a race scenario of a member
bMSC can be another (partial) member bMSC or an im-
plied scenario of the MSC specification. Formally, this
is stated in the following proposition.
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Figure 12: Race scenarios or not

Proposition 11. If M′ is a race scenario of a member
bMSC M of specificationM, but is not a race scenario
of M, then either L(M′) ⊆ pre f (L(M)) or M′ is an
implied scenario.

Proof. Let us suppose that e, f are two events on pro-
cess P such that M can be represented by a word waub,
where a = l(e) , b = l( f ) and [e, f ] is race in M; M′

can be represented by word wb and w, u are two words
on alphabet A of specificationM. To prove the propo-
sition, if wb is not a race scenario ofM, it is sufficient
to show that either wb ∈ pre f (L(M)) or is an implied
scenario ofM. This follows from Definitions 2, 7 and
11. �

To develop a race definition of MSC specifications
that causes pathological scenarios defined in Section 4,
it is necessary to rule out races in (partial) member bM-
SCs which do not lead to race scenarios. Following this
idea, we give the definition of race in MSC specifica-
tions.

Definition 12. (Race in MSC Specifications) Let us
assume that M is an MSC specification, e, f are two
events on process Pi. [e, f ] is a race ofM if [e, f ] is a
race in some member bMSC M ofM such that uau′b ∈
pre f (L(M)|Pi) where a = l(e), b = l( f ) and u, u′ are
two words in alphabet Ai and ub < pre f (L(M))|Pi. If
this is the case then we say that [e, f ] is a race of M
based on M. We say thatM is race free, ifM contains
no races.

a
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M1

b
c

P1 P2 P3

M2
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Figure 13: Race scenarios in an MSC specification

Informally, a race in an MSC specification is first a
race of a member bMSC and this race leads to race sce-
narios. In the definition, uau′b, where a = l(e), b = l( f ),
represents a prefix of the projection of M on process Pi.
It contains the labels of the two events which form a race
[e, f ]. ub is the projection of the race scenario formed
by applying RSC to M.

Example 17. (Race and race scenario in MSC speci-
fication) Consider MSC specificationM7 given in Fig-
ure 13 which has M1 and M2 as its member bMSCs. M3
and M4 are two race scenarios of the individual member
bMSCs, respectively. Both event pairs corresponding to
event labels ?a and ?c in M1 and M2 form races ofM7
since M3 and M4 are race scenarios ofM7.

According to Definition 12, let e and f be two events
in M1, ?a = l(e) and ?c = l( f ). Then [e, f ] is a race
based on M1, i.e., [e, f ] is a race of M7 and we can
demonstrate this by the inspection of M1.

In addition, the following relationships hold between
race, race free and race scenarios. Proposition 12 states
that RSC is also applicable for race of MSC specifica-
tion.

Proposition 12. If [e, f ] is a race of MSC specification
M based on M, then scenario M′ generated by RSC
from M is a race scenario ofM.

Proof. We have that race [e, f ] is a race on process P
based on M. A bMSC M′ can be generated by RSC. It
is clear that the behaviours of all other processes (ex-
cluding P) are consistent with the specification, since
they are prefixes of projections of M. According to Def-
inition 12, the projection on P is not in pre f (L(M)|P).
Therefore, M′ is a race scenario ofM. The proposition
is established. �
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The motivation for detecting races to avoid problem-
atic scenarios in real runs is stated in the following
proposition.

Proposition 13. An MSC specificationM is race free if
and only ifM leads to no race scenarios.

Proof. For the forward direction, let us suppose thatM
contains no races; we then show that there are no race
scenarios inM. We will use proof by contradiction: as-
sume that there is a race scenario wa where a = l( f ) and
event f happens on process Pi such that w is a prefix
of L(M) but well-formed wa is not a valid prefix. No-
tice that every member bMSC M of L(M) that contains
f and has prefix w can be represented by a well-formed
and complete word wuau′, where u and u′ are two words
on alphabet A. We then have wuau′|Pi ∈ L(M)|Pi.
In addition, since wa < pre f (L(M)), wua|Pi , wa|Pi

and so u|Pi , ε. This means that in M there is
an event e on Pi that happens immediately after the
event sequence corresponding to w|Pi but before f . Be-
cause msg−1( f ) corresponds to a letter in w, we have
¬(e <∗ msg−1( f )) and e , msg−1( f ). Therefore [e, f ]
is a race of M according to Proposition 9. Because
wa|Pi < pre f (L(M)|Pi), [e, f ] is a race of M. This
provides a contradiction as required.

For the converse direction, let us suppose that there
are no race scenarios inM; we then prove that there is
no race inM. We prove this also by contradiction. Let
us assume that M contains no race scenarios but there
is a race [e, f ] of M on process Pi in some member
bMSC M. According to Proposition 12, a race scenario
of M can always be generated by RSC. This gives a
contradiction as required. �

As stated in Proposition 12, RSC is useful in con-
structing race scenarios. RSC can also be used to check
whether a race of member bMSC is a race of the speci-
fication.

Proposition 14. If, for every race of any member
bMSC, the race scenario generated by RSC is not a race
scenario of MSC specificationM, thenM is race free.

Proof. This follows from Proposition 12. �

Finally, with the relationship between non-local
choice and implied scenarios given in Section 5 and the
relationship between race and race scenarios proven, the
relationship among race free, non-local choice free and
pathology free can be stated in the following proposi-
tion.

Proposition 15. An MSC specificationM is pathology
free if and only if M is race free and non-local choice
free.

Proof. For the forward direction, let M be pathology
free. M leads to no pathological scenarios according
to Proposition 1. Therefore, M does not lead to race
scenarios and implied scenarios based on Proposition 3.
M thus contains no race and non-local choice accord-
ing to Propositions 6 and 13. The forward direction is
established.

For the converse direction, let M be race free and
non-local choice free.M thus leads to no race scenarios
and implied scenarios according to Propositions 6 and
13. Therefore, M leads to no pathological scenarios
(Proposition 3), and so is pathology free according to
Proposition 1. The converse direction is established. �

7. Discussion

We note that our definition of race free in MSC spec-
ifications is different from the definition in [11]. In this
section, we provide a comparison between the two def-
initions. In addition, we briefly discuss how to apply
the results in previous sections on systems with differ-
ent communications using FIFO communication as an
example.

7.1. An alternative definition of race free

If we denote the language corresponding to enforced
orders of MSC specification M as Len(M), the defini-
tion of race free in [11] is as follows5.

Definition 13. (Race Free in MSC Specifications
[11]) An MSC specification M contains races if
L(M) ⊆ A∗ is strictly included in Len(M) ⊆ A∗.

That is, MSC specificationM is race free if L(M) =

Len(M). Nodes in MSG can only refer to bMSCs. This
intuitively appealing definition directly extends Propo-
sition 7 for single bMSC specifications. However, this
race free definition is not consistent with race free in
Definition 12 for MSC specifications. Let us use an ex-
ample to discuss both race free definitions.

Example 18. (Race free) Consider an MSC specifica-
tion M8 with two bMSCs M1 and M2 given in Fig-
ure 14. With Definition 13, M is not race free, since
L(M8) equals L(M1)∪L(M2) and Len(M8) = Len(M1) =

5This definition is slightly different from the original in [11] which
is defined on the traces of the set of events E.
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Figure 14: An example of implied scenarios

Len(M2) = L(M1) ∪ L(M2) ∪ L(M3) ∪ L(M4), therefore,
L(M8) , Len(M8). This means that there are races
inM8 and the races lead to two problematic scenarios
M3 and M4. With Definition 12, M8 is race free since
all scenarios, M′1,M

′′
1 ,M

′
2 and M′′2 , generated by RSC

are not race scenarios of M8, because the projections
of these scenarios are prefixes of the corresponding pro-
cess languages. In fact, according to Alur et al. [18],
M3 and M4 are implied scenarios.

The formal relationship between the two race free
definitions is stated in Proposition 16.

Proposition 16. Given an MSC specification M, if M
is race free under Definition 12 but L(M) , Len(M)
then any word w ∈ Len(M)\L(M) represents an implied
scenario ofM; if L(M) = Len(M) thenM is race free
according to Definition 12.

Proof. For the first part, let us suppose that M is race
free according to Definition 12, L(M) , Len(M), it is
sufficient to show that any w ∈ Len(M)/L(M) repre-
sents an implied scenario. Clearly, w|Pi ∈ L(M)|Pi be-
causeM is race free under Definition 12. In addition, w
is well-formed but w < L(M) since w ∈ Len(M)/L(M).
Therefore, w is an implied scenario according to Defini-
tion 7.

For the second part, we will use proof by contradic-
tion. Let us suppose that L(M) = Len(M) and there
is a race [e, f ] of M based on a member bMSC M.
Based on race [e, f ], a race scenario M′ of M can be
constructed by applying RSC. L(M′) ∈ pre f (Len(M))
since ¬(e �∗ f ). However, L(M′) < pre f (L(M)) since
M′ is a race scenario ofM. This gives the required con-
tradiction.

The proposition is established. �

Proposition 16 means that the race free condition in
Definition 12 is weaker than that in Definition 13. The
MSC specifications that are race free with Definition 12
and not with Definition 13 only cause implied scenarios.

Consequently, we have the following proposition.

Proposition 17. Let us suppose that M is an MSC
specification, if for all Pi ∈ P, Len(M)|Pi ⊆ L(M)|Pi

thenM is race free according to Definition 12.

Proof. We will use proof by contradiction. Let us sup-
pose that for all Pi ∈ P Len(M)|Pi ⊆ L(M)|Pi, but
there is a race formed by e, f . [e, f ] must be a race in
some bMSC M such that there is some uau′b ∈ L(M)|Pi,
where a = l(e) and b = l( f ), for which ub is not a prefix
of L(M)|Pi.

Since [e, f ] is a race in M, ub ∈ pre f (Len(M))|Pi.
This contradicts Len(M)|Pi ⊆ L(M)|Pi. The proposition
is established. �

This proposition can be used to detect races on a
specific process of an MSC specification by compar-
ing the process language and the local language denoted
Len(M))|Pi. It also suggests that it is possible to cure
races in distributed systems by changing the behaviour
of local systems following language Len(M))|Pi.

Example 19. Let us reconsider process P2 in specifica-
tionM8 given in Figure 14. Obviously, there is no en-
forced order between events ?inc.U and ?double.U so
the Len(M8)|P2 = L(M8)|P2. Therefore, there is not a
race on P2 in specificationM8 according to Proposition
17.

Let us suppose that the implementation of P2 only ac-
cepts events ?inc.U, ?double.U, and in a specific order
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as shown in M1 of Figure 14. Since there is no enforced
order between the two events based on M1 of Figure 14,
M1 is not race free. To solve this problem, one way is to
change the implementation of P2 to allow it to receive
the two events in either order, for example adding M2 in
the same figure as a member bMSC. The other way is
to introduce additional enforced order between the two
events for example using an FIFO communication with
a global channel buffer.

7.2. Impact of communications
In this paper, in order to focus on introducing a frame-

work on pathologies in MSCs, we adopt the standard
partial order semantics and also use a trace semantics
consistent with partial order semantics. With the stan-
dard partial order semantics, each message is regarded
as two events, messages can overtake previous mes-
sages; in addition there are no bounds placed on the
number of messages sent by a process. We note that
specific MSC specifications may not be implementable
with certain types of communication [38]. A type of
communication which can implement most of the MSC
specifications should be chosen when developing a gen-
eral framework so that most of the pathologies can be
exposed to the analysis. Therefore, similar to much of
the work on pathologies [8, 9, 11, 18, 31], we insist
that the underlying communications between the sub-
systems are asynchronous, non-FIFO and that each mes-
sage channel has an independent buffer, is not order pre-
serving and is unbounded.

It is clear that pathologies and pathological scenarios
can be affected by the communication chosen by the im-
plementations. For example, it was shown that race may
lead to different results under different types of commu-
nication [13]. However, since we place relatively few
constraints on the communications, other types of com-
munication may generate fewer pathological scenarios,
corresponding to fewer pathologies. This is important,
since it means that the pathologies in the specification
and the possible pathological scenarios with a system
implemented with more restricted types of communica-
tion are subsets of the results generated by the configu-
ration adopted in the previous sections. Therefore, the
results given in previous sections are adaptable.

In the rest of the section, we extend the results in pre-
vious sections to FIFO communications with individual
channel buffers to show that our framework is adapt-
able to other types of communication. For race and
race scenarios, the definition of enforced order (Defi-
nition 3) needs to be revised to reflect the condition of
FIFO communications. In addition to the existing or-
ders in Definition 3, orders between a pair of receive

M1

P1 P2

m1

m2

M2

P1 P2

m1

m2

M3

P1 P2

m2

m1

Figure 15: Race and implied scenario with FIFO

events of two messages that are from the same originat-
ing process and to the same destination process should
be included. Some races with non-FIFO communica-
tions may no longer be races with FIFO communica-
tions due to the change of enforced order. Consequently,
the number of race scenarios may be reduced.

Example 20. (Race with FIFO communication)
Consider an MSC specification M9 with only one
bMSC M1 given in Figure 15. M2 is race scenario of
M9 since [?m1, ?m2] is a race with non-FIFO commu-
nication. However, M2 is not a race scenario with FIFO
communication since ?m1 and ?m2 do not form a race
with FIFO. This is because we have ?m1 �?m2 with
FIFO.

The situation for non-local choice and implied sce-
narios is slightly different. It is not necessary to re-
vise definitions and propositions in changing from non-
FIFO to FIFO communications. Definitions of non-
local choice and implied scenarios are independent of
the types of communication. However, the use of
FIFO communication leads to a subset of the speci-
fied language being possible for the implemented dis-
tributed system. Consequently, there are implied scenar-
ios which cannot happen with FIFO communications.

Example 21. (Impossible implied scenarios) Let us
consider MSC specification M10 containing two
MSCs, M1 and M3, shown in Figure 15. M2 is an im-
plied scenario, but M2 cannot happen with FIFO com-
munications because no message can overtake previous
messages that are sent from the same process to the
same destination.

8. Conclusions

This paper introduced a framework for MSCs in
which pathology and pathological scenarios are re-
garded as two different concepts. In this framework,
pathological scenarios are undesirable scenarios that
can arise from synchronisation problems. To reduce the
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number of pathological scenarios to be considered, we
required that a pathological scenario contained only one
event violating the specification. It transpired that this
restriction enabled us to categorise pathological scenar-
ios within the framework. It was shown that a famous
concept in MSC research, implied scenarios with one
undesirable event is a type of pathological scenario. We
called the other type of pathological scenario race sce-
narios. It also transpired that the sets of implied scenar-
ios and race scenarios partition the set of pathological
scenarios. This result does not hold if we do not require
that pathological scenarios only contain one event that
violates the specification.

We concentrated on problems that cause synchroni-
sation issues. We assumed that a process will only
send a message when this is consistent with its local
specification (the sensible local behaviour assumption)
and found that only two pathologies, race and non-local
choice, lead to scenarios with synchronisation prob-
lems. Moreover, these pathologies are orthogonal. We
proved that race and non-local choice cause race sce-
narios and implied scenarios, respectively. It was also
observed that our definition of race in an MSC Speci-
fication was different from that traditionally used. We
compared the race free definition in [11] with ours. We
found that an MSC specification that is race free accord-
ing to [11] was also race free according to the refined
race free definition in this paper, but not vice versa. An
MSC specification that is not race free according to [11]
can be race free but lead to implied scenarios accord-
ing to the new definition. Thus, an MSC specification
is race free and has no implied scenarios under our def-
inition if and only if it is race free and has no implied
scenarios under the definition given in [11]. The main
difference between our definition and that in [11] is that
our definition leads to the sets of race scenarios and im-
plied scenarios being disjoint.

The framework helped us to clarify some difficult is-
sues and apparently contradictory statements in MSC
research. The taxonomy on pathologies and the patho-
logical scenarios and the formal relationships between
types of pathologies and pathological scenarios pro-
vided an accurate way to address the observed prob-
lems and predict the possible problems in a running dis-
tributed system. The result implies that each type of
pathology leads to a specific type of problem. Con-
versely, if specific problems were observed, specific
pathologies must have been introduced into the speci-
fication. In addition, this framework showed that the
only causes of synchronisation problems in MSCs are
race and non-local choice. As a result, race and non-
local choice related problems should be a major focus

of research on MSC pathologies in the future.
The framework developed in this paper has potential

to be applied in different research areas. For example,
there has been recent interest in using MSCs to define
test cases [40, 41]. In our experience, it is difficult to de-
termine the impact of pathologies in testing with MSCs.
However, based on the framework, controllability prob-
lems of testing with MSCs can be clearly categorised.
It has been shown that races cause controllability prob-
lems of timing and non-local choices cause controlla-
bility problems of choice [26]. In addition, solutions to
the controllability problems were developed by adopt-
ing corresponding solutions to tackle race and non-local
choice pathologies [26].

Our definition of a pathological scenario required that
there is only one undesirable event. If multiple undesir-
able events were allowed then we would obtain (expo-
nentially) more problematic scenarios. There are clear
benefits from identifying such a smaller set of scenarios:
the software engineer can focus on these when deciding
whether the MSC specification should be revised and
can also use the pathological scenarios as the basis of
validation and verification processes, such as testing to
determine whether any of these scenarios are behaviours
of the implementation.

We are currently working on finding better algorithms
for detecting non-local choices and races in complex
MSC specifications. Existing solutions for these prob-
lems in the literature are exponential time algorithms
[31, 11]. However, these algorithms can be improved
from different aspects. There is no algorithm for detect-
ing races based on the refined race definition. This may
be a simpler question than detecting traditional races in
complex MSC specifications since the refined race defi-
nition is orthogonal to non-local choice which has been
proved to be difficult to detect. By investigating char-
acteristics of these pathologies, further categorisations
for both types of pathology may be identified. Devel-
oping algorithms for detecting key subtypes of a pathol-
ogy might be easier than detecting all pathologies. In
addition, since both problems are in EXSPACE, it may
be possible to apply heuristic search methods to find
most of the pathologies in MSC specifications. Remov-
ing most of the pathologies from specifications will lead
to more robust implementations of systems. Finally, it
could be very interesting to develop a tool based on the
proposed framework the with single undesirable event
restriction. The tool should has the following functions:
detecting race and non-local choices in MSC specifica-
tions, tracing the pathologies that causes an observed
pathological scenario and proposing possible cures to
the identified pathologies.
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