190 research outputs found

    Trend in ice moistening the stratosphere – constraints from isotope data of water and methane

    Get PDF
    Water plays a major role in the chemistry and radiative budget of the stratosphere. Air enters the stratosphere predominantly in the tropics, where the very low temperatures around the tropopause constrain water vapour mixing ratios to a few parts per million. Observations of stratospheric water vapour show a large positive long-term trend, which can not be explained by change in tropopause temperatures. Trends in the partitioning between vapour and ice of water entering the stratosphere have been suggested to resolve this conundrum. We present measurements of stratospheric H_(2)O, HDO, CH_4 and CH_(3)D in the period 1991–2007 to evaluate this hypothesis. Because of fractionation processes during phase changes, the hydrogen isotopic composition of H_(2)O is a sensitive indicator of changes in the partitioning of vapour and ice. We find that the seasonal variations of H_(2)O are mirrored in the variation of the ratio of HDO to H_(2)O with a slope of the correlation consistent with water entering the stratosphere mainly as vapour. The variability in the fractionation over the entire observation period is well explained by variations in H_(2)O. The isotopic data allow concluding that the trend in ice arising from particulate water is no more than (0.01±0.13) ppmv/decade in the observation period. Our observations suggest that between 1991 and 2007 the contribution from changes in particulate water transported through the tropopause plays only a minor role in altering in the amount of water entering the stratosphere

    Impact of molecular spectroscopy on carbon monoxide abundances from tropomi

    Get PDF
    The impact of SEOM–IAS (Scientific Exploitation of Operational Missions–Improved Atmospheric Spectroscopy) spectroscopic information on CO columns from TROPOMI (Tropospheric Monitoring Instrument) shortwave infrared (SWIR) observations was examined. HITRAN 2016 (High Resolution Transmission) and GEISA 2015 (Gestion et Etude des Informations Spectroscopiques Atmosphériques 2015) were used as a reference upon which the spectral fitting residuals, retrieval errors and inferred quantities were assessed. It was found that SEOM–IAS significantly improves the quality of the CO retrieval by reducing the residuals to TROPOMI observations. The magnitude of the impact is dependent on the climatological region and spectroscopic reference used. The difference in the CO columns was found to be rather small, although discrepancies reveal, for selected scenes, in particular, for observations with elevated molecular concentrations. A brief comparison to Total Column Carbon Observing Network (TCCON) and Network for the Detection of Atmospheric Composition Change (NDACC) also demonstrated that both spectroscopies cause similar columns; however, the smaller retrieval errors in the SEOM with Speed-Dependent Rautian and line-Mixing (SDRM) inferred CO turned out to be beneficial in the comparison of post-processed mole fractions with ground-based references

    Derivation of tropospheric methane from TCCON CH₄ and HF total column observations

    Get PDF
    The Total Carbon Column Observing Network (TCCON) is a global ground-based network of Fourier transform spectrometers that produce precise measurements of column-averaged dry-air mole fractions of atmospheric methane (CH₄). Temporal variability in the total column of CH₄ due to stratospheric dynamics obscures fluctuations and trends driven by tropospheric transport and local surface fluxes that are critical for understanding CH₄ sources and sinks. We reduce the contribution of stratospheric variability from the total column average by subtracting an estimate of the stratospheric CH₄ derived from simultaneous measurements of hydrogen fluoride (HF). HF provides a proxy for stratospheric CH₄ because it is strongly correlated to CH₄ in the stratosphere, has an accurately known tropospheric abundance (of zero), and is measured at most TCCON stations. The stratospheric partial column of CH₄ is calculated as a function of the zonal and annual trends in the relationship between CH₄ and HF in the stratosphere, which we determine from ACE-FTS satellite data. We also explicitly take into account the CH₄ column averaging kernel to estimate the contribution of stratospheric CH₄ to the total column. The resulting tropospheric CH₄ columns are consistent with in situ aircraft measurements and augment existing observations in the troposphere

    Toward accurate CO_2 and CH_4 observations from GOSAT

    Get PDF
    The column-average dry air mole fractions of atmospheric carbon dioxide and methane (X_(CO_2) and X_(CH_4)) are inferred from observations of backscattered sunlight conducted by the Greenhouse gases Observing SATellite (GOSAT). Comparing the first year of GOSAT retrievals over land with colocated ground-based observations of the Total Carbon Column Observing Network (TCCON), we find an average difference (bias) of −0.05% and −0.30% for X_(CO_2) and X_(CH_4) with a station-to-station variability (standard deviation of the bias) of 0.37% and 0.26% among the 6 considered TCCON sites. The root-mean square deviation of the bias-corrected satellite retrievals from colocated TCCON observations amounts to 2.8 ppm for X_(CO_2) and 0.015 ppm for X_(CH_4). Without any data averaging, the GOSAT records reproduce general source/sink patterns such as the seasonal cycle of X_(CO_2) suggesting the use of the satellite retrievals for constraining surface fluxes

    Validation and data characteristics of methane and nitrous oxide profiles observed by MIPAS and processed with Version 4.61 algorithm

    Get PDF
    The ENVISAT validation programme for the atmospheric instruments MIPAS, SCIAMACHY and GOMOS is based on a number of balloon-borne, aircraft, satellite and ground-based correlative measurements. In particular the activities of validation scientists were coordinated by ESA within the ENVISAT Stratospheric Aircraft and Balloon Campaign or ESABC. As part of a series of similar papers on other species [this issue] and in parallel to the contribution of the individual validation teams, the present paper provides a synthesis of comparisons performed between MIPAS CH4 and N2O profiles produced by the current ESA operational software (Instrument Processing Facility version 4.61 or IPF v4.61, full resolution MIPAS data covering the period 9 July 2002 to 26 March 2004) and correlative measurements obtained from balloon and aircraft experiments as well as from satellite sensors or from ground-based instruments. In the middle stratosphere, no significant bias is observed between MIPAS and correlative measurements, and MIPAS is providing a very consistent and global picture of the distribution of CH4 and N2O in this region. In average, the MIPAS CH4 values show a small positive bias in the lower stratosphere of about 5%. A similar situation is observed for N2O with a positive bias of 4%. In the lower stratosphere/upper troposphere (UT/LS) the individual used MIPAS data version 4.61 still exhibits some unphysical oscillations in individual CH4 and N2O profiles caused by the processing algorithm (with almost no regularization). Taking these problems into account, the MIPAS CH4 and N2O profiles are behaving as expected from the internal error estimation of IPF v4.61 and the estimated errors of the correlative measurements

    Calibration of TCCON column-averaged CO2: the first aircraft campaign over European TCCON sites

    Get PDF
    The Total Carbon Column Observing Network (TCCON) is a ground-based network of Fourier Transform Spectrometer (FTS) sites around the globe, where the column abundances of CO2, CH4, N2O, CO and O2 are measured. CO2 is constrained with a precision better than 0.25% (1-σ). To achieve a similarly high accuracy, calibration to World Meteorological Organization (WMO) standards is required. This paper introduces the first aircraft calibration campaign of five European TCCON sites and a mobile FTS instrument. A series of WMO standards in-situ profiles were obtained over European TCCON sites via aircraft and compared with retrievals of CO2 column amounts from the TCCON instruments. The results of the campaign show that the FTS measurements are consistently biased 1.1% ± 0.2% low with respect to WMO standards, in agreement with previous TCCON calibration campaigns. The standard a priori profile for the TCCON FTS retrievals is shown to not add a bias. The same calibration factor is generated using aircraft profiles as a priori and with the TCCON standard a priori. With a calibration to WMO standards, the highly precise TCCON CO2 measurements of total column concentrations provide a suitable database for the calibration and validation of nadir-viewing satellite

    Derivation of tropospheric methane from TCCON CH₄ and HF total column observations

    Get PDF
    The Total Carbon Column Observing Network (TCCON) is a global ground-based network of Fourier transform spectrometers that produce precise measurements of column-averaged dry-air mole fractions of atmospheric methane (CH₄). Temporal variability in the total column of CH₄ due to stratospheric dynamics obscures fluctuations and trends driven by tropospheric transport and local surface fluxes that are critical for understanding CH₄ sources and sinks. We reduce the contribution of stratospheric variability from the total column average by subtracting an estimate of the stratospheric CH₄ derived from simultaneous measurements of hydrogen fluoride (HF). HF provides a proxy for stratospheric CH₄ because it is strongly correlated to CH₄ in the stratosphere, has an accurately known tropospheric abundance (of zero), and is measured at most TCCON stations. The stratospheric partial column of CH₄ is calculated as a function of the zonal and annual trends in the relationship between CH₄ and HF in the stratosphere, which we determine from ACE-FTS satellite data. We also explicitly take into account the CH₄ column averaging kernel to estimate the contribution of stratospheric CH₄ to the total column. The resulting tropospheric CH₄ columns are consistent with in situ aircraft measurements and augment existing observations in the troposphere
    corecore