6,157 research outputs found

    Radio-frequency dressed atoms beyond the linear Zeeman effect

    Get PDF
    We evaluate the impact that nonlinear Zeeman shifts have on resonant radio-frequency (RF) dressed traps in an atom-chip configuration. The degeneracy of the resonance between Zeeman levels is lifted at large intensities of a static field, modifying the spatial dependence of the atomic adiabatic potential. In this context, we find effects that are important for the next generation of atom chips with tight trapping: in particular, that the vibrational frequency of the atom trap is sensitive to the RF frequency and, depending on the sign of the Landé factor, can produce significantly weaker, or tighter trapping when compared to the linear regime of the Zeeman effect. We take 87 Rb as an example and find that it is possible for the trapping frequency on F = 1 to exceed that of the F = 2 hyperfine manifold

    Nonholonomic constraints in kk-symplectic Classical Field Theories

    Get PDF
    A kk-symplectic framework for classical field theories subject to nonholonomic constraints is presented. If the constrained problem is regular one can construct a projection operator such that the solutions of the constrained problem are obtained by projecting the solutions of the free problem. Symmetries for the nonholonomic system are introduced and we show that for every such symmetry, there exist a nonholonomic momentum equation. The proposed formalism permits to introduce in a simple way many tools of nonholonomic mechanics to nonholonomic field theories.Comment: 27 page

    Atom chips with two-dimensional electron gases: theory of near surface trapping and ultracold-atom microscopy of quantum electronic systems

    Full text link
    We show that current in a two-dimensional electron gas (2DEG) can trap ultracold atoms <1μ<1 \mum away with orders of magnitude less spatial noise than a metal trapping wire. This enables the creation of hybrid systems, which integrate ultracold atoms with quantum electronic devices to give extreme sensitivity and control: for example, activating a single quantized conductance channel in the 2DEG can split a Bose-Einstein condensate (BEC) for atom interferometry. In turn, the BEC offers unique structural and functional imaging of quantum devices and transport in heterostructures and graphene.Comment: 5 pages, 4 figures, minor change

    On the Hamilton-Jacobi Theory for Singular Lagrangian Systems

    Full text link
    We develop a Hamilton-Jacobi theory for singular lagrangian systems using the Gotay-Nester-Hinds constraint algorithm. The procedure works even if the system has secondary constraints.Comment: 36 page

    Symmetries in Classical Field Theory

    Full text link
    The multisymplectic description of Classical Field Theories is revisited, including its relation with the presymplectic formalism on the space of Cauchy data. Both descriptions allow us to give a complete scheme of classification of infinitesimal symmetries, and to obtain the corresponding conservation laws.Comment: 70S05; 70H33; 55R10; 58A2

    Hamiltonian Dynamics of Linearly Polarized Gowdy Models Coupled to Massless Scalar Fields

    Get PDF
    The purpose of this paper is to analyze in detail the Hamiltonian formulation for the compact Gowdy models coupled to massless scalar fields as a necessary first step towards their quantization. We will pay special attention to the coupling of matter and those features that arise for the three-handle and three-sphere topologies that are not present in the well studied three torus case -in particular the polar constraints that come from the regularity conditions on the metric. As a byproduct of our analysis we will get an alternative understanding, within the Hamiltonian framework, of the appearance of initial and final singularities for these models.Comment: Final version to appear in Classical and Quantum Gravit

    A Generalization of Chetaev's Principle for a Class of Higher Order Non-holonomic Constraints

    Get PDF
    The constraint distribution in non-holonomic mechanics has a double role. On one hand, it is a kinematic constraint, that is, it is a restriction on the motion itself. On the other hand, it is also a restriction on the allowed variations when using D'Alembert's Principle to derive the equations of motion. We will show that many systems of physical interest where D'Alembert's Principle does not apply can be conveniently modeled within the general idea of the Principle of Virtual Work by the introduction of both kinematic constraints and variational constraints as being independent entities. This includes, for example, elastic rolling bodies and pneumatic tires. Also, D'Alembert's Principle and Chetaev's Principle fall into this scheme. We emphasize the geometric point of view, avoiding the use of local coordinates, which is the appropriate setting for dealing with questions of global nature, like reduction.Comment: 27 pages. Journal of Mathematical Physics (to zappear

    On the k-Symplectic, k-Cosymplectic and Multisymplectic Formalisms of Classical Field Theories

    Get PDF
    The objective of this work is twofold: First, we analyze the relation between the k-cosymplectic and the k-symplectic Hamiltonian and Lagrangian formalisms in classical field theories. In particular, we prove the equivalence between k-symplectic field theories and the so-called autonomous k-cosymplectic field theories, extending in this way the description of the symplectic formalism of autonomous systems as a particular case of the cosymplectic formalism in non-autonomous mechanics. Furthermore, we clarify some aspects of the geometric character of the solutions to the Hamilton-de Donder-Weyl and the Euler-Lagrange equations in these formalisms. Second, we study the equivalence between k-cosymplectic and a particular kind of multisymplectic Hamiltonian and Lagrangian field theories (those where the configuration bundle of the theory is trivial).Comment: 25 page

    A revised distance to IRAS 16293-2422 from VLBA astrometry of associated water masers

    Full text link
    IRAS 16293-2422 is a very well studied young stellar system seen in projection towards the L1689N cloud in the Ophiuchus complex. However, its distance is still uncertain with a range of values from 120 pc to 180 pc. Our goal is to measure the trigonometric parallax of this young star by means of H2_2O maser emission. We use archival data from 15 epochs of VLBA observations of the 22.2 GHz water maser line. By modeling the displacement on the sky of the H2_2O maser spots, we derived a trigonometric parallax of 7.1±1.37.1\pm1.3 mas, corresponding to a distance of 14121+30141_{-21}^{+30} pc. This new distance is in good agreement with recent values obtained for other magnetically active young stars in the L1689 cloud. We relate the kinematics of these masers with the outflows and the recent ejections powered by source A in the system.Comment: 14 pages, 6 tables, 8 figures. Accepted to be published in Astronomy \& Astrophysic
    corecore