458 research outputs found
Correlations Beyond the Nearest-Neighbor Level in Grain Boundary Networks
Correlations among \u27special\u27 and \u27general\u27 grain boundaries are studied on two-dimensional networks, by examining the configurational entropy of boundary structures as well as percolation thresholds. Consideration of crystallographic constraints at various length scales reveals that higher-order constraints play a role in boundary connectivity and network structure. Implications for grain boundary engineering are discussed and directions for future work highlighted
Effect of Grain Boundary Engineering on Microstructural Stability During Annealing
Grain boundary engineering, which increases the special boundary fraction, may improve microstructural stability during annealing. Different processing routes are undertaken to establish the effectiveness of each and to better understand which microstructural features determine the resulting stability. We find that multiple cycles of grain boundary engineering result in a material that resists abnormal grain growth better than other processing routes despite similarities in special boundary fraction, grain size, and general boundary connectivity among as-processed materials
Simulation of Plasticity in Nanocrystalline Silicon
Molecular dynamics investigation of plasticity in a model nanocrystalline silicon system demonstrates that inelastic deformation localizes in intergranular regions. The carriers of plasticity in these regions are atomic environments that can be described as high-density liquid-like amorphous silicon. During fully developed flow, plasticity is confined to system-spanning intergranular zones of easy flow. As an active flow zone rotates out of the plane of maximum resolved shear stress during deformation to large strain, new zones of easy flow are formed. Compatibility of the microstructure is accommodated by processes such as grain rotation and formation of new grains. Nano-scale voids or cracks may form if there emerge stress concentrations that cannot be relaxed by a mechanism that simultaneously preserves microstructural compatibility
Analysis of Precipitate Redistribution in Inconel 617 Using Integrated Electron Backscatter Diffraction and Energy Dispersive Spectroscopy
Inconel 617 (IN617), a candidate alloy for applications in the Next Generation Nuclear Plant, derives its oxidation resistance and strength at temperatures above 900°C from both solid solution strengthening and the precipitation of carbides [1]. Cr-rich carbides (usually M23C6) reside primarily on grain boundaries, while Mo-rich carbides (usually M6C) tend to be within grains [1-4]. Both intragranular and intergranular carbides play an important role in the creep behavior of the alloy [1]. During creep, intragranular carbides can dissolve and re-precipitate at grain boundaries, especially on boundaries in tension [1]. While the precipitate distribution before and after creep deformation has been investigated, the role of grain boundary character has not been included in the analysis
SNP Discovery and Linkage Map Construction in Cultivated Tomato
Few intraspecific genetic linkage maps have been reported for cultivated tomato, mainly because genetic diversity within Solanum lycopersicum is much less than that between tomato species. Single nucleotide polymorphisms (SNPs), the most abundant source of genomic variation, are the most promising source of polymorphisms for the construction of linkage maps for closely related intraspecific lines. In this study, we developed SNP markers based on expressed sequence tags for the construction of intraspecific linkage maps in tomato. Out of the 5607 SNP positions detected through in silico analysis, 1536 were selected for high-throughput genotyping of two mapping populations derived from crosses between ‘Micro-Tom’ and either ‘Ailsa Craig’ or ‘M82’. A total of 1137 markers, including 793 out of the 1338 successfully genotyped SNPs, along with 344 simple sequence repeat and intronic polymorphism markers, were mapped onto two linkage maps, which covered 1467.8 and 1422.7 cM, respectively. The SNP markers developed were then screened against cultivated tomato lines in order to estimate the transferability of these SNPs to other breeding materials. The molecular markers and linkage maps represent a milestone in the genomics and genetics, and are the first step toward molecular breeding of cultivated tomato. Information on the DNA markers, linkage maps, and SNP genotypes for these tomato lines is available at http://www.kazusa.or.jp/tomato/
Location of chlorogenic acid biosynthesis pathway and polyphenol oxidase genes in a new interspecific anchored linkage map of eggplant
© Gramazio et al.; licensee BioMed Central. 2014. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated
Anti-cancer effects and mechanism of actions of aspirin analogues in the treatment of glioma cancer
INTRODUCTION: In the past 25 years only modest advancements in glioma treatment have been made, with patient prognosis and median survival time following diagnosis only increasing from 3 to 7 months. A substantial body of clinical and preclinical evidence has suggested a role for aspirin in the treatment of cancer with multiple mechanisms of action proposed including COX 2 inhibition, down regulation of EGFR expression, and NF-κB signaling affecting Bcl-2 expression. However, with serious side effects such as stroke and gastrointestinal bleeding, aspirin analogues with improved potency and side effect profiles are being developed. METHOD: Effects on cell viability following 24 hr incubation of four aspirin derivatives (PN508, 517, 526 and 529) were compared to cisplatin, aspirin and di-aspirin in four glioma cell lines (U87 MG, SVG P12, GOS – 3, and 1321N1), using the PrestoBlue assay, establishing IC50 and examining the time course of drug effects. RESULTS: All compounds were found to decrease cell viability in a concentration and time dependant manner. Significantly, the analogue PN517 (IC50 2mM) showed approximately a twofold increase in potency when compared to aspirin (3.7mM) and cisplatin (4.3mM) in U87 cells, with similar increased potency in SVG P12 cells. Other analogues demonstrated similar potency to aspirin and cisplatin. CONCLUSION: These results support the further development and characterization of novel NSAID derivatives for the treatment of glioma
Hyperpolarized13c mri of tumor metabolism demonstrates early metabolic response to neoadjuvant chemotherapy in breast cancer
Purpose: To compare hyperpolarized carbon 13 (13C) MRI with dynamic contrast material–enhanced (DCE) MRI in the detection of early treatment response in breast cancer. Materials and Methods: In this institutional review board–approved prospective study, a woman with triple-negative breast cancer (age, 49 years) underwent13C MRI after injection of hyperpolarized [1–carbon 13 {13C}]-pyruvate and DCE MRI at 3 T at baseline and after one cycle of neoadjuvant therapy. The13C-labeled lactate-to-pyruvate ratio derived from hyperpolarized13C MRI and the pharmacokinetic parameters transfer constant (Ktrans) and washout parameter (kep ) derived from DCE MRI were compared before and after treatment. Results: Exchange of the13C label between injected hyperpolarized [1-13C]-pyruvate and the endogenous lactate pool was observed, catalyzed by the enzyme lactate dehydrogenase. After one cycle of neoadjuvant chemotherapy, a 34% reduction in the13C-labeled lactate-to-pyruvate ratio resulted in correct identification of the patient as a responder to therapy, which was subsequently confirmed via a complete pathologic response. However, DCE MRI showed an increase in mean Ktrans (132%) and mean kep (31%), which could be incorrectly interpreted as a poor response to treatment. Conclusion: Hyperpolarized13C MRI enabled successful identification of breast cancer response after one cycle of neoadjuvant chemotherapy and may improve response prediction when used in conjunction with multiparametric proton MRI
- …