
TECHNICAL DEVELOPMENT

Breast cancer is the most common cancer in women, ac-
counting for over 2 million new cases annually world-

wide (1). Triple-negative breast cancer (TNBC) repre-
sents 15%–20% of all breast cancers and is defined by 
low or absent expression of hormone receptors and lack 
of amplification or overexpression of human epidermal 
growth factor receptor type 2 (HER2). Therefore, TNBC 
lacks any established targeted treatment options, such as 
endocrine or anti-HER2 therapy. Compared with other 
subtypes of breast cancer, TNBC has an adverse overall 
outcome, but it often shows good response to neoadju-
vant chemotherapy (2). In contrast to adjuvant chemo-
therapy, neoadjuvant chemotherapy allows assessment of 

treatment response in situ and downstaging of the tumor 
prior to surgery (2). Furthermore, complete pathologic 
response after neoadjuvant chemotherapy is an important 
prognostic factor in patients with TNBC, as it is indica-
tive of longer event-free and overall survival (3,4).

Early prediction of pathologic complete response at im-
aging would assist patient care and has been demonstrated 
using several approaches, including multiparametric proton 
MRI, but it remains challenging owing to the low accuracy 
of these techniques (5,6). The delayed identification of non-
responders results in increased patient morbidity from side 
effects as well as a risk of metastases from chemoresistant 
cells; it also has substantial economic implications (7).
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Purpose:  To compare hyperpolarized carbon 13 (13C) MRI with dynamic contrast material–enhanced (DCE) MRI in the detection of 
early treatment response in breast cancer.

Materials and Methods:  In this institutional review board–approved prospective study, a woman with triple-negative breast cancer (age, 
49 years) underwent 13C MRI after injection of hyperpolarized [1–carbon 13 {13C}]-pyruvate and DCE MRI at 3 T at baseline and 
after one cycle of neoadjuvant therapy. The 13C-labeled lactate-to-pyruvate ratio derived from hyperpolarized 13C MRI and the phar-
macokinetic parameters transfer constant (Ktrans) and washout parameter (kep) derived from DCE MRI were compared before and after 
treatment.

Results:  Exchange of the 13C label between injected hyperpolarized [1-13C]-pyruvate and the endogenous lactate pool was observed, 
catalyzed by the enzyme lactate dehydrogenase. After one cycle of neoadjuvant chemotherapy, a 34% reduction in the 13C-labeled 
lactate-to-pyruvate ratio resulted in correct identification of the patient as a responder to therapy, which was subsequently confirmed 
via a complete pathologic response. However, DCE MRI showed an increase in mean Ktrans (132%) and mean kep (31%), which could 
be incorrectly interpreted as a poor response to treatment.

Conclusion:  Hyperpolarized 13C MRI enabled successful identification of breast cancer response after one cycle of neoadjuvant chemo-
therapy and may improve response prediction when used in conjunction with multiparametric proton MRI.
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of a 49-year-old woman was performed in 2018, 1 day before 
the start of neoadjuvant chemotherapy (baseline) and after a 
3-week cycle of chemotherapy (follow-up) with a clinical 3-T 
scanner (MR750; GE Healthcare, Waukesha, Wis).

1H MRI
Diagnostic quality 1H MRI of the breast was performed using 
a dedicated eight-channel phased-array receive-only 1H breast 
coil with the patient in the prone position and a three-dimen-
sional fast spoiled gradient-echo sequence with k-space data 
sharing for DCE MRI (volume image breast assessment–time-
resolved imaging of contrast kinetics [VIBRANT-TRICKS]), 
as previously described (14). Images were acquired with a rep-
etition time of 7.1 msec, echo time of 3.8 msec, an in-plane 
voxel size of 0.68 3 0.68 mm, a slice thickness of 1.4 mm, 
a field of view of 350 mm, a matrix of 512 3 512, spectral-
spatial water excitation, and a flip angle of 12°. Forty-eight VI-
BRANT-TRICKS volumes were acquired over 8 minutes, with 
a temporal resolution of 9.4 seconds. Contrast agent injec-
tion was started between volumes two and three. Gadobutrol 
(Gadovist; Bayer Healthcare, Berlin, Germany) was injected at 
0.1 mmol per kilogram of body weight and a flow rate of 3.0 
mL/sec followed by a 25-mL saline flush.

Tumor volumes of interest were drawn manually on the DCE 
MRI data by an attending radiologist (R.W.) with 10 years of 
radiologic experience who specialized in breast imaging (3D 
Slicer; https://www.slicer.org) (15). For the baseline study, two sets 
of volumes of interest were drawn, one covering the entire tumor 
and a second excluding the central tumor area showing low or 
delayed enhancement. These volumes of interest were used to 
calculate tumor volumes in 3D Slicer and to extract voxelwise 
pharmacokinetic parameters (transfer constant [Ktrans], washout 
parameter [kep], extravascular extracellular volume [ve], and area 
under the contrast concentration versus time curve 90 seconds 
after contrast material injection [iAUC90]) (MIStar; Apollo 
Medical Imaging Technology, Melbourne, Australia). Only vox-
els with a high enough goodness of fit (r2  0.75) were included 
in the analyses. Mean values of the pharmacokinetic parameters 
were calculated for all sets of volumes of interest.

13C MRI and Postprocessing
Pharmacy kits and samples containing 1.47 g of [1-13C]-py-
ruvic acid and 15 mmol/L of an electron paramagnetic agent 
were prepared, hyperpolarized, and rapidly dissolved using 38 
mL of  superheated sterile water, and pharmaceutical quality 
and suitability for injection were confirmed after filtration of 
the electron paramagnetic agent to less than or equal to 3 µM, 
as described previously (16). Hyperpolarized pyruvate solution 
(0.4 mL/kg at a concentration of approximately 250 mmol/L) 
was injected at a rate of 5 mL/sec followed by a 25-mL saline 
flush. For 13C MRI, a dedicated eight-channel 13C breast coil 
(RAPID Biomedical, Rimpar, Germany) was used with a phan-
tom containing a 13C-labeled 8 mol/L urea sample (Sigma-Al-
drich, St Louis, Mo) positioned adjacent to the tumor-con-
taining breast. Images were acquired using a dynamic coronal 
iterative decomposition with echo asymmetry and least-squares 
estimation (known as IDEAL) spiral chemical shift imaging 

TNBC frequently shows metabolic changes, including a 
switch to glycolysis, resulting in increased production of lactate, 
either secondary to hypoxia or as a consequence of aerobic gly-
colysis, which is known as the Warburg effect (8). Hyperpolar-
ized carbon 13 (13C) MRI is an emerging clinical technique that 
allows dynamic imaging of metabolic reactions in vivo, such as 
13C label exchange between pyruvate and lactate after intrave-
nous injection of hyperpolarized [1–carbon 13 {13C}]-pyruvate 
(9). Preclinical studies of treatment response have shown a de-
crease in hyperpolarized 13C label exchange between pyruvate 
and lactate as early as 24 hours after cytotoxic treatment in a 
range of cancer models, including breast cancer (10,11). A study 
has recently demonstrated the feasibility of this technique for use 
in the assessment of patients with breast cancer, showing higher 
levels of lactate labeling in higher-grade tumors, including all 
the TNBCs assessed (12). The first clinical example of response 
assessment using hyperpolarized 13C MRI showed a decreased 
hyperpolarized lactate signal after 6 weeks of androgen depriva-
tion therapy in a patient with prostate cancer (13).

To our knowledge, this is the first report to demonstrate 
the use of hyperpolarized 13C MRI to monitor early response 
to neoadjuvant chemotherapy in human breast cancer, and 
here we have compared this with dynamic contrast material–
enhanced (DCE) MRI. In this study, we show that hyperpo-
larized 13C MRI is complementary to conventional hydrogen 
1 (1H) MRI in breast cancer, and our findings support the use 
of this technique as part of larger clinical studies in the future.

Materials and Methods

Study Design
This prospective study protocol had institutional review board 
(Cambridge South Research Ethics Committee) approval, and 
written informed consent was obtained. MRI of both breasts 

Abbreviations
DCE = dynamic contrast material–enhanced, Ktrans = transfer 
constant, kep = washout parameter, kPL = apparent exchange rate 
constant for pyruvate-lactate exchange,  Lac/Pyr = 13C-labeled 
lactate-to-pyruvate, SNR = signal-to-noise ratio, TNBC = triple-
negative breast cancer

Summary
Early response assessment in a patient with breast cancer undergoing 
neoadjuvant chemotherapy is feasible using hyperpolarized carbon 
13 MRI.

Key Points
	n To the authors’ knowledge, this is the first reported use of hy-

perpolarized carbon 13 (13C) MRI to detect an early metabolic 
response to neoadjuvant chemotherapy in a patient with breast 
cancer, demonstrating a 34% decrease in 13C lactate labeling after 
one cycle of therapy.

	n This finding was supported by a decrease in tumor volume of 76% 
and was confirmed as pathologic complete response at surgery; how-
ever, pharmacokinetic parameters derived from dynamic contrast-
enhanced MRI showed an increase in the mean transfer constant 
(132%) and mean washout parameter (31%), which are typically 
associated with nonpathologic complete response.
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Results
We report the case of a woman with TNBC undergoing neoad-
juvant chemotherapy and early response assessment, who under-
went assessment before and after the first cycle of treatment with 
multinuclear MRI of the breast. The patient was a 49-year-old 
woman with unifocal, grade 3, triple-negative (estrogen receptor 
weakly positive [Allred score, 3; 5% positive cells], progesterone 
receptor-negative, human epidermal growth factor receptor type 
2–negative [score, 1+]) invasive carcinoma of no specific type in 
the right breast (upper inner quadrant) and a Ki67 result of 90% 
positive cells with no necrosis at biopsy. Axillary lymph node 
core biopsy results were negative for malignancy. CT scans of the 
chest, abdomen, and pelvis were negative for metastatic disease. 
No family history of breast cancer was reported. The patient was 
negative for germline BRCA1 and BRCA2 mutations.

Baseline multinuclear (1H and 13C) MRI was performed 1 
day prior to treatment and revealed a unifocal cancer measur-
ing 34 3 35 3 38 mm in the posterior aspect of the right 
breast. The tumor showed avid contrast enhancement pe-
ripherally, with delayed enhancement centrally, which was 
most likely fibrotic in nature, as the signal intensity on T2-
weighted images was low centrally (Fig 1). After one cycle of 
neoadjuvant chemotherapy (three weekly doses of paclitaxel 
[Taxol; Bristol-Myers-Squibb, Princeton, NJ] and one dose of 
carboplatin), multinuclear MRI was repeated (Figs 1, 2) and 
imaging data showed a decrease in the Lac/Pyr signal inten-
sity ratio of 34%, with a similar decrease of 37% in kPL for the 
exchange of hyperpolarized 13C label between pyruvate and 
lactate. This was accompanied by a decrease in tumor volume 
of 76%, all of which demonstrated early signs of successful 
treatment response. In contrast, DCE MRI showed an in-
crease in mean Ktrans of 132% and a smaller increase in mean 
kep of 31% when compared with evaluation of the entire tu-
mor at baseline (Fig 3); similar results were shown when the 
central delayed enhancing area was excluded, with a 113% 
increase in Ktrans and a 23% increase in kep.

sequence (17). Spectral data from the eight breast coil chan-
nels were summed over time. Complex imaging data from the 
eight breast coil channels were summed over the time series, 
then combined as the sum of squares with signal from each 
channel weighted by the maximal signal-to-noise ratio (SNR) 
of pyruvate. Pyruvate, pyruvate hydrate, lactate, alanine, and 
bicarbonate images were reconstructed. Tumor regions of in-
terest were generated by thresholding the sum of the summed 
lactate and pyruvate signals using custom software developed 
in MATLAB (version 2019b, MathWorks, Natick, Mass) so 
that the diameter of the region of interest on the 13C images 
matched the maximum transverse tumor diameter on the DCE 
MRI scans at peak enhancement. Since the noise distribution 
on images of different individual metabolites is the same, noise 
was characterized from an entire image in which spiral acquisi-
tion artifacts were absent. We used the following equation to 
generate the SNR for pyruvate and lactate (SNRmetabolite), on 
which further calculations of metabolite ratios were based:

,

where mROI is the mean signal intensity in the tumor region of 
interest, and mnoise and σnoise are the mean and standard devia-
tion, respectively, of the noise signal and both were computed 
from the entire noise image series, as described previously.

By dividing the SNR of lactate summed over the entire 
image time course by the summed pyruvate SNR, the 13C-
labeled lactate-to-pyruvate (Lac/Pyr) ratio was calculated. 
The apparent exchange rate constant for pyruvate-lactate 
exchange (kPL) was computed based on a frequency-domain 
approach and linear least-squares fitting using a two-site ex-
change model (18).

The lactate and pyruvate SNR and the Lac/Pyr ratio in 
this patient at baseline were included in a previous feasibility 
study (12).

Figure 1:  Multinuclear hydrogen 1 and 13C MR images of the right breast at baseline (top) and after one cycle of neoadjuvant chemotherapy (bottom). (a) Coronal 
summed hyperpolarized [1-13C]-pyruvate and (b) [1-13C]-lactate signal overlaid on unenhanced T1-weighted images. (c) Coronal dynamic contrast-enhanced MR image 
obtained 150 seconds after contrast agent injection and (d) overlaid transfer constant (Ktrans) map.
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therapy is frequently associated with pathologic complete 
response (20,21). However, here we observed that both Ktrans 
and kep were increased markedly after one cycle of treatment 
(by 132% and 32%, respectively), which would have incor-
rectly identified this patient as a nonresponder. This finding 
is in keeping with previous work, which has demonstrated 
the poor sensitivity of pharmacokinetic parameters in the 
early identification of pathologic complete response despite 
high specificity (20). For example, in a previous study, re-
sponders with early tumor shrinkage after one cycle of neo-
adjuvant chemotherapy showed an increased Ktrans in 22% 
of cases and an increased kep in 11% of cases on early DCE 
MRI follow-up (22). DCE MRI performed with high spa-
tial and temporal resolution to allow pharmacokinetic mod-
eling is feasible and can be integrated into routine clinical 
scanning protocols to allow quantitative data analysis in ad-
dition to kinetic maps used routinely for radiologic assess-
ment of breast tumors.

Preclinical hyperpolarized 13C MRI 
studies investigating treatment response 
have shown a significant decrease in 13C 
label exchange between 13C pyruvate and 
13C lactate as early as 24–48 hours after 
cytotoxic treatment in murine lymphoma 
and breast cancer models (10,11). An ini-
tial clinical report on androgen depriva-
tion therapy for prostate cancer in one pa-
tient showed decreased 13C label exchange 
between pyruvate and lactate 6 weeks 
after initiation of treatment (13). The fea-
sibility of using this method in patients 
with breast cancer has been demonstrated 
recently (12): Higher Lac/Pyr ratios were 
observed in larger and more aggressive 
tumors (including all triple-negative can-
cers), and this correlated with the expres-
sion of the plasma membrane transporter 
mediating uptake of pyruvate into tumor 
cells (monocarboxylate transporter 1) 
and hypoxia-inducible factor 1-a. We 
have shown here that hyperpolarized 13C 

After seven cycles of neoadjuvant chemotherapy (four cy-
cles of weekly paclitaxel and with carboplatin every 3 weeks, 
followed by three cycles of epirubicin and cyclophospha-
mide), the patient underwent wide local excision of the can-
cer. At histopathologic examination, no residual invasive or 
in situ carcinoma was identified, in keeping with the patho-
logic complete response.

Discussion
Identification of early response to neoadjuvant chemother-
apy in patients with breast cancer is challenging with cur-
rently available imaging methods (5,6). Pharmacokinetic 
modeling of DCE MRI can improve early identification of 
nonresponders to neoadjuvant chemotherapy when com-
pared with measurements of tumor size (19), although some 
controversy persists about the exact role of the DCE in- and 
outflow parameters (Ktrans and kep) in stratifying response. 
A decrease in these constants during neoadjuvant chemo-

Figure 2:  Summed 13C spectra over time after 13C-pyruvate bolus arrival in the breast. Summed spectra for 
(a) baseline and (b) after one cycle of neoadjuvant chemotherapy. ppm = parts per million.

Figure 3:  Changes in volume, 13C-lactate-to-pyruvate (Lac/Pyr) ratio, exchange rate constant (kPL), transfer constant (Ktrans), and washout parameter (kep) between base-
line and follow-up imaging after one cycle (cycle 1) of neoadjuvant chemotherapy. While tumor volume and Lac/Pyr ratio decreased during treatment in this responding 
patient, pharmacokinetic parameters Ktrans and kep increased. Changes in Lac/Pyr ratio and kPL are based on imaging data, not spectra. The 13C MRI-based metrics were 
therefore more reliable than dynamic contrast material–enhanced MRI in correctly identifying this patient as a responder. Volumes of interest covering the entire tumor at the 
baseline and follow-up imaging were used to calculate these mean values..
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MRI can be used to detect early response to neoadjuvant che-
motherapy in a patient with breast cancer. Metabolic response 
was demonstrated after one cycle of neoadjuvant chemotherapy 
by decreases in the Lac/Pyr ratio and kPL of 34% and 37%, re-
spectively. These findings were supported by a concurrent de-
crease in tumor volume of 76% and were eventually confirmed 
as pathologic complete response at surgery. Hyperpolarized 13C 
MRI may therefore improve the prediction of response when 
used in conjunction with conventional multiparametric MRI.

Although glycolysis can be probed indirectly with other tech-
niques, such as PET and conventional 1H MR spectroscopy, hy-
perpolarized 13C MRI offers a number of potential advantages. 
The technique is free of ionizing radiation, does not require a 
long uptake time (as is the case with fluorine 18 [18F] fluoro-
deoxyglucose [FDG]), and, because it depends on lactate pool 
size, it assesses more of the glycolytic pathway than 18F FDG 
PET, which effectively assesses the first two steps of glycolysis. A 
preclinical study recently demonstrated the superiority of hyper-
polarized 13C MRI over 18F FDG PET in early response assess-
ment in a breast cancer model (23). Lactate measurements using 
1H MR spectroscopy remain challenging in patients with breast 
cancer owing to the high abundance of lipids in breast tumors 
and surrounding fat tissue (24). Other multinuclear MRI ap-
proaches have been shown to complement 1H MR spectroscopy 
in detecting response to treatment in breast cancer (25,26).

The limitations of our study were that the results are from 
one patient, and the response was assessed after a full cycle of 
chemotherapy, when there was already a decrease in tumor vol-
ume. Further studies are needed to assess whether the metabolic 
changes observed in this study precede changes in tumor vol-
ume, as has been demonstrated preclinically (23).

In conclusion, we showed that early response assessment in 
breast cancer using hyperpolarized 13C MRI is feasible. Our re-
sults also support a potential clinical role for the technique in 
conjunction with multiparametric breast MRI by enabling an 
early readout of response that aids clinical decision making and 
may facilitate the development of targeted drugs for the treat-
ment of TNBC.
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