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Abstract 

Correlations among ‘special’ and ‘general’ grain boundaries are studied on two-dimensional networks, by 

examining the configurational entropy of boundary structures as well as percolation thresholds.  Consideration of 

crystallographic constraints at various length scales reveals that higher-order constraints play a role in boundary 

connectivity and network structure.  Implications for grain boundary engineering are discussed and directions for 

future work highlighted. 

 

1. Introduction 

 The motivation behind grain boundary 

engineering is that grain boundaries exhibit a wide 

spread in their physical properties, and not all 

boundaries need be regarded as detrimental for 

processes of intergranular degradation or failure.  In 

this context, it is relatively common to divide grain 

boundaries in a binary fashion into ‘general’ vs. 

‘special’ (i.e., damage susceptible vs. damage 

resistant) types.  This approach has proven extremely 

useful for understanding the structure of the grain 

boundary network, as it lends itself to analysis by the 

methods of percolation theory, where the grain 

boundary network is modeled as a bond lattice [1-4].  

The fraction of special boundaries then becomes the 

important microstructural state variable that controls 

boundary clustering, and the percolation threshold for 

general boundaries becomes a natural ‘target’ for the 

grain boundary engineer: materials with special 

fractions above the threshold are, in principle, not 

prone to long-range intergranular damage. 

 In the ongoing effort to develop percolation 

theory for grain boundary networks, one major focus 

has been on the local correlations among special and 

general grain boundaries in the network.  These 

correlations were first observed experimentally at the 

points of nearest-neighbor connectivity, the triple 

junctions [5, 6], and explained on the basis of 

crystallography [7, 8].  The fact that correlations are 

present in grain boundary networks is of great 

significance in grain boundary engineering, because 

the clustering behavior and percolation threshold are 

substantially different from expectations based on 

random bond percolation problems [5, 8, 9]. 

 Although nearest-neighbor correlations 

among grain boundaries are now reasonably well 

understood, a clear direction for future work in this 

field is to measure and understand longer-range 

correlations.  Several authors have speculated that 

longer-range correlations may exist [10-12], but apart 

from our most recent study on quadruple junction 

character [9], there has been no quantitative 

exploration of this issue.  In this note, we offer the 

first study of correlations at the second and third 

nearest-neighbor levels in two-dimensional (2D) 

grain boundary networks, and point to critical issues 

for the development of a comprehensive percolation 

theory for grain boundary networks. 

 

2. Methods 

 We simulate two-dimensional grain 

boundary networks on ideal honeycomb lattices by 

first assigning grain orientations (three Euler angles, 

for grains of assumed cubic symmetry) and 

subsequently calculating boundary misorientations.  

Three ‘families’ of microstructures have been 

simulated, each of which is produced with a different 

method for selecting the initial grain orientations.  

These are described as: 

a) ‘General Textured’ microstructures, which 

range from an ideal single-component 

texture to ideally random.  In this case, 

special boundaries are of the low-angle 

variety (with disorientations below 15º), and 

are promoted by sharpening the texture. 

b) ‘Fiber Textured’ microstructures, which 

range from ideal single-component textures 

to ideal ‘ring’ fiber textures, and again 

where special boundaries are of the low-

angle variety. 

c) ‘Twinned’ microstructures, in which all 

grain orientations are related to one another 

by Σ3
n
 rotations, and where special 

boundaries are coincidence boundaries with 
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Σ ≤ 29 and lie within the Brandon criterion 

[13]. 

More details on the general simulation procedures are 

available in Refs. [8, 9], and are omitted here for 

brevity.  Once constructed, the networks are analyzed 

in terms of their special boundary fractions, as well 

as the connectivity among boundary types. 

 

3. Analysis of Boundary Correlations 
 Our study of correlations in the grain 

boundary network is based upon our understanding of 

crystallographic constraints that are present in any 

microstructure, and which restrict the way in which 

grain boundary types may be assembled into a 

network.  These constraints are formally expressed 

by the need for orientation conservation around a 

Frank-Nabarro circuit through the microstructure; the 

misorientations around any closed loop must be self-

compensating, so that the beginning and ending of 

the circuit have the same orientation.  The simplest 

possible non-trivial circuit of this kind is that which 

encircles a triple junction (see, for example, Fig. 1a); 

this is referred to as a constraint of first order, and the 

boundary correlations that arise from this constraint 

are already well understood [7, 8].  In this work we 

proceed to examine higher-order constraints, which 

represent larger Frank-Nabarro circuits that traverse 

more grains and grain boundaries.  In general, we 

will identify the order of the constraint, N, with the 

number of triple junctions encircled by the circuit; 

Fig. 1 illustrates the first three orders of constraint for 

a 2D honeycomb network.   

Following upon prior work in the field, 

boundary correlations are quantified through 

examination of local statistics.  At the first-order 

level there are four topologically unique species of 

triple junctions as shown in Fig. 1, and their statistics 

represent the now common ‘triple junction 

distribution’ [5, 6, 14-17].  A similar statistical 

analysis is possible for the higher-order circuits in 

Fig. 1, although the analysis becomes considerably 

more complicated due to the rapidly increasing 

number of unique species (called D, and specified 

below each unit in Fig. 1).  For example, at the third-

order level there are D = 72 unique species (allowing 

for mirror-symmetric redundancy), as drawn 

explicitly in Fig. 1. 

  To proceed, we would like to quantitatively 

evaluate the ‘strength’ of each constraint shown in 

Fig. 1.  For this purpose we will use the 

configurational entropy, S, of the largest, third-order 

units: 

∑−=
i

ii ffS ln             (1) 

where fi is the fraction of the i
th

 species from among 

the D = 72 species drawn in Fig. 1.  Entropy is 

chosen as a metric for grain boundary correlations 

because constraints usually increase the information 

content (and reduce the disorder) in the system.  The 

calculation is performed for the third-order boundary 

structure simply because this structure contains 

information about all of the lower-order constraints.  

In fact, every circuit in Fig. 1 necessarily contains 

within it smaller loops of lower order, but in general, 

the higher-order circuits involve additional, non-

redundant constraints because they encircle some 

boundaries which they do not cross.  In the case of 

the third-order boundary structure there are three sub-

circuits around the triple junctions (first-order 

constraints), as well as two second-order circuits.  

None of these is necessarily redundant with one 

another or with the third-order constraint, and the 

important question as we proceed is: how can we 

deconvolve the individual contributions of each 

constraint to the configurational entropy, S? 

 Our procedure to extract the several entropic 

contributions is established in detail for a 

complementary case in three dimensions in Ref. [9].  

There the second-order constraint around quadruple 

nodes was evaluated from the first-order triple 

junction constraint, and the entropy change induced 

by each was extracted.  Here we use the same general 

procedure: the probability of finding a structure of 

third order is calculated using a straightforward 

probabilistic calculation based on the statistics of the 

elements of a lower order, N.  Repeating this 

procedure for N = 1 and 2 gives expectations for the 

population of third-order species if only constraints 

up to N
th

 order are enforced.  We define, therefore, 

individual entropy increments in the following way: 
3

N

3

3

3

N SSS −=∆          (2) 

where 
j

iS is the entropy among units of order j, given 

complete crystallographic constraints up to order i.  

In this work we will only examine entropy calculated 

at the j = 3 level, although the concept is easily 

extended to higher (or lower) orders. 

  Based on these calculations, we can examine 

how the entropy of the N = 3 boundary structures 

(shown in Fig. 1c) evolves as constraints are added in 

order from least to greatest.  Furthermore, we will 

also compare to the N = 0 case, which is the 

unconstrained case where boundaries are simply 

assigned at random.  In what follows, we present only 

graphical results of these calculations, and suppress 

hundreds of lengthy statistical equations which can 

all be easily reproduced using the method of Ref. [9], 

and which are collected elsewhere for the interested 

reader [18]. 

 

4. Entropy and Constraint 

 To begin our discussion, we first examine 

the magnitude of the total entropy change that occurs 

when all crystallographic constraints up to N = 3 are 
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imposed on an initially random network.  This 

quantity is 
3

0S∆ , and is plotted in Fig. 2 for the three 

microstructural families, in each case as a function of 

the special boundary fraction, p.  There are two 

important points conveyed by this figure.  First, the 

level of constraint in grain boundary networks may 

vary significantly with the special fraction; grain 

boundary engineering to increase p may lead to 

fundamental changes in grain boundary correlations.  

Second, Fig. 2 also shows that different 

microstructural families can have considerably 

different correlations, with the fiber textured class in 

this case exhibiting more significant entropy changes 

due to crystallographic constraint.  This result is in 

line with prior results on these simulated 

microstructures [8, 9], which showed that fiber 

textured materials have the strongest nearest-

neighbor correlations in both 2D and 3D.   

 Although Fig. 2 focused upon the total 

entropy change given complete crystallographic 

constraint out to third order,
3

0S∆ , similar plots can 

be constructed for each of the individual 

contributions to this total entropy.  Rather than 

examine all of these curves individually, we instead 

focus upon the behavior in the vicinity of the general 

boundary percolation threshold (p ≈ 0.35), because 

this is the point where correlations have the most 

impact on network structure and therefore materials 

properties.  In Fig. 3, we explicitly plot the 

contribution of each constraint, and examine the 

entropy change resulting from each.  For all of the 

curves in Fig. 3, we see that the highest entropy is 

associated with N = 0 (i.e., a random network without 

constraint), and the progressive addition of 

constraints at N = 1, 2 and 3 leads to a decrease in the 

system entropy.  Furthermore, the largest drop in 

entropy always occurs at the first-order level; this is 

the triple junction constraint studied previously in the 

literature, which we see here is usually dominant in 

dictating the system entropy.  For example, although 

the fiber textured microstructures have the largest 

values of 
3

0S∆  in Fig. 3, 
3

1S∆  in these 

microstructures approaches zero, suggesting that 

first-order constraints alone are responsible for 

virtually all of the information in the system.  

However, we also clearly see that higher-order 

constraints are not always negligible; the entropy 

drop upon addition of second-order constraints (from 

N = 1 to N = 2) in general textured and twinned 

microstructures is still clearly non-zero.  In these 

microstructural families, it seems that higher-order 

constraints are relatively more important.  To our 

knowledge, the significance of longer-range 

correlations has not been appreciated in any prior 

work on the structure of grain boundary networks.  In 

fact, these effects cannot be observed through studies 

of, e.g., the triple junction distribution, which 

samples only first-order effects. 

 

5. Percolation Thresholds 

 One link between grain boundary network 

structure and properties is through the percolation 

threshold, which, in a single number, gives 

information about connectivity over large length 

scales.  It is well known that finite-scale correlations 

shift the percolation threshold, and this issue has been 

explored in grain boundary networks in prior work 

[4, 5, 8, 9].  Here we decouple the effects of first- and 

higher-order constraints upon the percolation 

thresholds of a 2D honeycomb lattice, as illustrated in 

Fig. 4.  Large networks (larger than 300 x 300 grains) 

have been simulated using either (i) a process of 

random grain boundary character assignment, (ii) a 

process of triple junction assignment incorporating 

first-order constraints, or (iii) completely 

crystallographically-consistent assignments of grain 

orientation.  The percolation thresholds of these 

networks were found to within ±0.005, using many 

discrete simulations analyzed with the standard 

Hoshen-Kopelman algorithm [19].  The thresholds 

for both general and special grain boundaries were 

identified, and are differentiated in Fig. 4 by the 

closed and open data points, respectively. 

 Looking first at the points for the fiber 

textured microstructural family, we see that the 

percolation threshold shifts significantly when first-

order constraints are imposed upon the system, but 

that additional higher-order constraints do relatively 

little to change the picture.  This result is consistent 

with our prior observations from Fig. 3, where we 

found a dominant first-order constraint in these 

microstructures.  In contrast, the percolation 

thresholds in both the general textured and twinned 

microstructures vary with each constraint imposed on 

the system.  Interestingly, the higher-order 

constraints seem to have a relatively large impact on 

the threshold, and in fact, cause a shift in the opposite 

direction as compared to the first-order constraint.  

This result is probably related to the earlier 

observation from Fig. 3 that these microstructural 

families have significant higher-order constraints, 

and we now see that these can actually have very 

different influences on the network structure as 

compared to the triple junction constraint.   

 

6. Discussion and Conclusions 

 The calculations presented in this work 

represent the first systematic exploration of higher-

order constraints in grain boundary networks, and 

reveal some intriguing directions for future inquiry.  

One point that emerges by looking at configurational 

entropy as well as the percolation thresholds is that 
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higher-order constraints cannot, in general, be 

neglected when studying the connectivity of grain 

boundary networks.  The state-of-the-art in 

experimental correlation analysis at present is the 

triple junction distribution; we now suspect that this 

metric alone is insufficient for a complete 

understanding of network structure and prediction of 

properties.  Furthermore, we have seen here a great 

complexity in the way constraints of different order 

influence the network structure.  In particular, 

constraints of different order may actually compete 

with one another to shift the percolation threshold up 

or down in p (c.f., Fig. 4), although here this is 

demonstrated only in the particular case of 2D 

honeycomb lattices.   

Another point of particular concern is the 

significant differences seen from one family of 

microstructures to the next; whereas polycrystals 

sharing a common crystallographic axis (fiber 

textured family) seem to have only very short-range 

correlations, more complex textures induce longer-

range correlations out to at least third order and 

possibly beyond.  We believe this may be related to 

the details of the crystallographic constraint 

equations.  When the crystals share a crystallographic 

axis as in our fiber textured materials, it is known that 

the first-order constraint is rigid (the three signed 

boundary disorientations sum exactly to zero) [8].  In 

this case, higher order constraints are, to a large 

extent, redundant.  In contrast, for general textured 

and twinned microstructures the first-order constraint 

is much less rigid, so higher-order constraints can 

provide significantly more information content.  The 

quantitative details as to how crystallographic texture 

influences grain boundary correlations are certainly 

not clear at present, and this represents a key issue for 

the future generalization of percolation theory to any 

grain boundary network.  

To conclude this note, we point out that 

thorough analytical calculations of grain boundary 

constraints, like those performed here, are rather 

complex.  Already at the third-order level we have 

had to consider the statistics of D = 72 structural 

units.  Beyond the third order, additional topological 

complexities arise because there are non-redundant 

conformational variations of the Frank-Nabarro 

circuit.  For example, we identify three unique 

conformations of the fourth-order circuit (see Fig. 

5a), the statistics of which must be considered 

separately.  Fig. 5b shows that there are yet more 

unique circuits at N = 5; it is easy to see how the 

number of species involved in entropy calculations 

quickly becomes too large to handle analytically.  For 

this reason, we believe that the study of medium- and 

long-range structure in grain boundary networks may 

best be addressed through, e.g., the use of scaling 

laws [20]. 
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Figure 1: The first three orders of constraint in 2D honeycomb lattices.  The order of the constraint, N, is equal to the 

number of triple junctions encircled by the Frank-Nabarro circuit.  The number of topologically unique species of 

each order, D, is identified below each circuit as well.  For N = 1 and N = 3, a representative structure is shown for 

each of the unique species in which the thinner lines indicate general boundaries and the thicker lines special 

boundaries.   

D = 4 
N = 1 

D = 14 
N = 2 

(b) (c) (a) 

D = 72 
N = 3 
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Figure 2: The magnitude of the total entropy change between a randomly assembled network and one in which full 

crystallographic constraints are imposed, plotted as a function of p.  
3

0S∆  is calculated from Eq. 2 using the 

population of N = 3 boundary structures.   

 

 

 

 

 

   
 

Figure 3: The contribution of each constraint level N to the total change in configurational entropy, 
3

NS∆ , evaluated 

at p = 0.35 for the N = 3 boundary structure. 
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Figure 4: The percolation thresholds for 2D honeycomb lattices of grain boundaries; thresholds for special 

boundaries (open symbols) and general boundaries (filled symbols) are shown as a function of the constraints 

imposed on the system.  Left to right, these data correspond to networks that were simulated using a process of (i) 

random grain boundary character assignment (no constraints imposed), (ii) triple junction assignment (only first-

order constraints imposed), or (iii) grain orientation assignment (full crystallographic constraints imposed). 

 

 

 

 
 

Figure 5: Frank-Nabarro circuits of fourth (a) and fifth (b) order. 
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