2,274 research outputs found

    The Accuracy of Morphological Decomposition of Active Galactic Nucleus Host Galaxies

    Full text link
    In order to assess the accuracy with which we can determine the morphologies of AGN host galaxies, we have simulated more than 50,000 ACS images of galaxies with z < 1.25, using image and noise properties appropriate for the GOODS survey. We test the effect of central point-source brightness on host galaxy parameter recovery with a set of simulated AGN host galaxies made by adding point sources to the centers of normal galaxies. We extend this analysis and also quantify the recovery of intrinsic morphological parameters of AGN host galaxies with a set of fully simulated inactive and AGN host galaxies. We can reliably separate good from poor fit results using a combination of reasonable error cuts, in the regime where L_{host}:L_{PS} > 1:4. We give quantitative estimates of parameter errors as a function of host-to-point-source ratio. In general, we separate host and point-source magnitudes reliably at all redshifts; point sources are well recovered more than 90% of the time, although spurious detection of central point sources can be as high as 25% for bulge-dominated sources. We find a general correlation between Sersic index and intrinsic bulge-to-total ratio, such that a host galaxy with Sersic n < 1.5 generally has at least 80% of its light from a disk component. Likewise, "bulge-dominated" galaxies with n > 4 typically derive at least 70% of their total host galaxy light from a bulge, but this number can be as low as 55%. Single-component Sersic fits to an AGN host galaxy are statistically very reliable to z < 1.25 (for ACS survey data like ours). In contrast, two-component fits involving separate bulge and disk components tend to over-estimate the bulge fraction by ~10%, with uncertainty of order 50%.Comment: 45 pages, 20 figures, submitted to ApJ ; Accepted Version -- additions to introduction and conclusions; title changed, was "Simulations of AGN Host Galaxy Morphologies

    Global Dynamics in Galactic Triaxial Systems I

    Get PDF
    In this paper we present a theoretical analysis of the global dynamics in a triaxial galactic system using a 3D integrable Hamiltonian as a simple representation. We include a thorough discussion on the effect of adding a generic non--integrable perturbation to the global dynamics of the system. We adopt the triaxial Stackel Hamiltonian as the integrable model and compute its resonance structure in order to understand its global dynamics when a perturbation is introduced. Also do we take profit of this example in order to provide a theoretical discussion about diffussive processes taking place in phase space.Comment: Accepted A&

    A Search for the Most Massive Galaxies. III. Global and Central Structure

    Get PDF
    We used the Advanced Camera for Surveys on board the Hubble Space Telescope to obtain high resolution i-band images of the centers of 23 single galaxies, which were selected because they have SDSS velocity dispersions larger than 350 km/s. The surface brightness profiles of the most luminous of these objects (M_i<-24) have well-resolved `cores' on scales of 150-1000 pc, and share similar properties to BCGs. The total luminosity of the galaxy is a better predictor of the core size than is the velocity dispersion. The correlations of luminosity and velocity dispersion with core size agree with those seen in previous studies of galaxy cores. Because of high velocity dispersions, our sample of galaxies can be expected to harbor the most massive black holes, and thus have large cores with large amounts of mass ejection. The mass-deficits inferred from core-Sersic fits to the surface-brightness profiles are approximately double the black-hole masses inferred from the M_bh-sigma relation and the same as those inferred from the M_bh-L relation. The less luminous galaxies (M_i>-23) tend to have steeper `power-law' inner profiles, higher-ellipticity, diskier isophotes, and bulge-to-total ratios of order 0.5 -- all of which suggest that they are `fast-rotators' and rotational motions could have contaminated the velocity dispersion estimate. There are obvious dust features within about 300 pc of the center in about 35% of the sample, predominantly in power-law rather than core galaxies.Comment: 27 Pages, 22 Figures, 2 Tables, Accepted for Publication in MNRA

    The Black Hole Mass of Abell 1836-BCG and Abell 3565-BCG

    Full text link
    Two brightest cluster galaxies (BCGs), namely Abell 1836-BCG and Abell 3565-BCG, were observed with the Advanced Camera for Surveys (ACS) and the Space Telescope Imaging Spectrograph (STIS) on board the Hubble Space Telescope. By modeling the available photometric and kinematic data, it resulted that the mass of Abell 1836-BCG and Abell 3565-BCG are M_bh=4.8(+0.8,-0.7)x10^9 M_sun and M_bh=1.3(+0.3,-0.4)x10^9 M_sun at 1 sigma confidence level, respectively.Comment: 4 pages, 3 figures, Mem SAIt in press, Proceedings of the 51st Annual Meeting of the Italian Astronomical Society, Florence, April 17-20, 200

    SINFONI's take on Star Formation, Molecular Gas, and Black Hole Masses in AGN

    Full text link
    We present some preliminary (half-way) results on our adaptive optics spectroscopic survey of AGN at spatial scales down to 0.085arcsec. Most of the data were obtained with SINFONI which provides integral field capability at a spectral resolution of R~4000. The themes on which we focus in this contribution are: star formation around the AGN, the properties of the molecular gas and its relation to the torus, and the mass of the black hole.Comment: 5 pages, 2 figures. To appear in Science Perspectives for 3D Spectroscopy. ESO Astrophysics Symposia. Ed by M. Kissler-Patig, M. Roth and J. Wals

    Induced Nested Galactic Bars Inside Assembling Dark Matter Halos

    Full text link
    We investigate the formation and evolution of nested bar systems in disk galaxies in a cosmological setting by following the development of an isolated dark matter (DM) and baryon density perturbation. The disks form within the assembling triaxial DM halos and the feedback from the stellar evolution is accounted for in terms of supernovae and OB stellar winds. Focusing on a representative model, we show the formation of an oval disk and of a first generation of nested bars with characteristic sub-kpc and a few kpc sizes. The system evolves through successive dynamical couplings and decouplings, forcing the gas inwards and settles in a state of resonant coupling. The inflow rate can support a broad range of activity within the central kpc, from quasar- to Seyfert-types, supplemented by a vigorous star formation as a by-product. The initial bar formation is triggered in response to the tidal torques from the triaxial DM halo, which acts as a finite perturbation. This first generation of bars does not survive for more than 4--5 Gyr: by that time the secondary bar has totally dissolved, while the primary one has very substantially weakened, reduced to a fat oval. This evolution is largely due to chaos introduced by the interaction of the multiple non-axisymmetric components.Comment: 4 pages, 4 figures, 1 mpeg animation. To be published by the Astrophysical Journal Letters. The animation can be found at http://www.pa.uky.edu/~shlosman/research/galdyn/movies.html Replaced with an updated version (small text corrections

    The M(BH)-Sigma Relation for Supermassive Black Holes

    Full text link
    We investigate the differences in the M(BH)-sigma relation derived recently by Ferrarese & Merritt (2000) and Gebhardt et al. (2000). The shallower slope found by the latter authors (3.75 vs. 4.8) is due partly to the use of a regression algorithm that ignores measurement errors, and partly to the value of the velocity dispersion adopted for a single galaxy, the Milky Way. A steeper relation is shown to provide a better fit to black hole masses derived from reverberation mapping studies. Combining the stellar dynamical, gas dynamical, and reverberation mapping mass estimates, we derive a best-fit relation M(BH) = 1.30 (+/- 0.36) X 10^8 (sigma_c/200)^{4.72(+/- 0.36)}, where M(BH) is in solar masses, and sigma in km/s.Comment: The Astrophysical Journal, in pres
    • 

    corecore