168 research outputs found

    Short length-scale variability of hybrid event beds and its applied significance

    Get PDF
    Hybrid event beds (HEBs) are a type of deep-water sediment gravity flow deposit that generally comprise a basal clean sandstone overlain by a variety of muddier and less-permeable sandy facies. They are thought to be emplaced by combinations of turbidity currents, transitional flows and debris flows, all as part of the same transport event. To date, a number of studies have highlighted the common presence of HEBs mainly in the outer and marginal parts of deep-water systems where they replace beds composed dominantly of clean sand up-dip and/or axially over scales of km to 10s km. In addition to these broad patterns, important yet poorly understood short-length facies changes (over metres to 100s m) occur, modifying the overall texture and reservoir characteristics at or beneath typical spacing of production wells. The nature and origin of the short length-scale transitions is here addressed in four well-exposed HEB-prone outcrops: the Cretaceous-Paleocene Gottero Sandstone and the Miocene Cilento Flysch, both in Italy, the Carboniferous Mam Tor Sandstone in northern England, and the Carboniferous basal Ross Sandstone Formation, Western Ireland. A series of detailed correlation panels show marked lateral variations in internal bed make-up for most of the hybrid event beds studied. This variability typically involves lateral changes in the proportions of the cleaner basal sandstone and the overlying muddy sandstone division that occur without substantial change in the overall event bed thickness. The variability is inferred to reflect the complex fingering between the up-dip sandstone-dominated part of the event bed and the down-dip linked debrite due to internal erosion (ploughing) of the debrite into the basal clean sand. Where the upper part of the bed is dominated by large mudstone rafts, these may have foundered into liquefied sand and been injected and partly fragmented by the sand intrusions. The variable thickness and continuity of the basal clean sandstones have important implications for reservoir characterisation; significant variability in bed character at interwell scale can be anticipated. Rugose contacts between the intra-bed facies divisions may impact on drainage and sweep efficiency during hydrocarbon production

    Hybrid Event Beds Generated By Local Substrate Delamination On A Confined-Basin Floor

    Get PDF
    The outer parts of deep-water fans, and the basin plains into which they pass, are often described as areas where erosion is negligible and turbidite systems have net aggradation. Nevertheless sedimentological and stratigraphic analysis of outer fan lobe and confined basin plain deposits in Cretaceous-Paleocene Gottero Sandstone (NW of Italy) has revealed extensive but cryptic bedding-parallel substrate-delamination features at the base of many sheet-like event beds. These comprise a variety of shallow but wide scour structures showing evidence of lateral expansion by sand-injection. The scours commonly occur at the base of beds made up of a basal clean sandstone overlain by argillaceous sandstone containing abundant mudstone clasts and locally large substrate rafts (up to 20 meters long). These strata are interpreted as a type of hybrid event bed. Field observations suggest that mud-clast entrainment occurred by delamination at the base of dense sandy flows. The large rafts, in some cases only partly detached, were incorporated in the flows locally and then carried for short distances (100s m to a few km) before partly disaggregating and undergoing deformation due to internal shearing. The development of such features may be common in flat and/or confined basin settings where high-volume flows interact with a cohesive and well layered substrate (e.g. muddy outer fans or confined or ponded basins with thick mudstone caps). Delamination is therefore suggested as an alternative mechanism leading to the formation of hybrid event beds following local substrate entrainment on the basin floor as opposed to on more remote slopes and at channel-lobe transition zones

    Facies and architecture of a sand-rich turbidite system in an evolving collisional-trench basin: a case history from the upper Cretaceous-Palaeocene Gottero system (Nw apennines)

    Get PDF
    This study documents the main depositional elements of a dynamically-controlled sand-rich deep-water turbidite system (Upper Cretaceous\u2013Palaeocene Gottero system, north-west Italy). The large exposures and the wide range of facies and deep-water sub-environments recognised, ranging from proximal channels, unconfined proximal and distal lobes and confined basin plain deposits make this an instructive case study to investigate the spatial-temporal relationships between fan features (channels and lobes) and confined to ponded basin-plain deposits developed in a trench-fill basin. The study focus on stratigraphic and palaeo-environmental reconstruction of the Gottero system in the western sector of the basin. Bed types, facies associations and depositional sub-environments are described in main outcrop locations and used to feed a comprehensive bed-scale database. A coherent stratigraphic framework of the system is proposed for the first time, linking its stratigraphic evolution with the collisional-trench context of the Ligurian units during the Upper Cretaceous-Palaeocene. It includes a first stage in which the Gottero was a prograding extensive basin-floor fan developed in a relatively unconfined setting (Gottero 1 and 2), and a second stage in which the system deepens and got progressively confined and segmented in multiple distal depocentres, dominated by sheet-like high magnitude events, meanwhile the proximal area forms a series of fan elements which display an overall retrograding trend (Gottero 3). The basin fill terminates with the deposition of the Giaiette mass-transport complex interepreted to represent the final collapse of the growing Ligurian accrectionary wedge

    Palaeoclimatic and palaeoenvironmental evolution of the Lower Pleistocene Arda River succession

    Get PDF
    The Arda River marine succession, cropping out in western Emilia (northern Italy) represents an excellent site to study past ecosystems dynamics in the frame of Early Pleistocene climate change and tectonic activity. This one-day excursion leads the participants to discover the palaeoclimatic and palaeoenvironmental evolution of the Lower Pleistocene Arda River marine section, unraveled through an integrated use of sedimentological, palaeoecological (molluscs and trace fossils) and geochemical tools. Upsection, the succession was deposited in progressively shallower water and colder climate during phases of advance of fan deltas affected by hyperpycnal flows. It culminates at the top with clast supported alluvial conglomerates and freshwater/terrestrial biota indicating a sea level drop and the establishment of a continental environment. It is very rich in fossils: in the marine part molluscs, brachiopods, corals and echinoderms, besides well preserved trace fossils, are abundant; whereas in the continental part a mammal fauna and freshwater/terrestrial molluscs are occasionally found. Sclerochemical analyses undertaken on bivalve shells indicate that seawater temperature seasonality was the main variable of climate change within the study area during the Early Pleistocene. In particular, strong seasonality and low winter palaeotemperatures were assumed to be the main drivers for the widespread establishment of Arctica islandica populations in the palaeo-Adriatic Sea around 1.80 Ma. During the excursion not only fossils are shown, but also interesting biocalcarenitic bodies with a complex geometry cropping out in the town of Castell\u2019Arquato. The excursion is complemented by the visit to the Giuseppe Cortesi geological and palaeontological museum, housing vertebrate and invertebrate fossil collections

    Three Geostatistical Methods for Hydrofacies Simulation Ranked Using a Large Borehole Lithology Dataset from the Venice Hinterland (NE Italy)

    Get PDF
    A large borehole lithology dataset from the shallowly buried alluvial aquifer of the Brenta River Megafan (NE Italy) is used in this paper to model hydrofacies with three classical geostatistical methods, namely the Object-Based Simulation (OBS), the Sequential Indicator Simulation (SIS), and the Truncated Gaussian Simulation (TGS), and rank alternative output models. Results show that, though compromising with geological realism and rendering a noisy picture of subsurface geology, the pixel-based TGS and SIS are better suited than OBS for their ease of conditioning to closely spaced boreholes, especially in fine-scale simulation grids. In turn, SIS appears to provide better prediction and less noisy hydrofacies models than TGS without requiring assumptions about relationship among operative facies, which makes it particularly suited for use with large borehole lithology datasets lacking detail and quality consistency. Flow simulation on a test volume constrained with numerous boreholes indicates the SIS hydrofacies models feature well-connected sands forming relatively fast flow paths as opposed to TGS models, which instead appear to carry a more dispersed flow. It is shown how such a difference primarily relates to ‘noise’, which in TGS models is so widespread to translate into a disordered spatial distribution of K and, consequently, a nearly isotropic simulated flow

    Fill to spill stratigraphic evolution of a confined turbidite mini-basin succession, and its likely well bore expression: The Castagnola Fm, NW Italy

    Get PDF
    This study documents the stratigraphic evolution of the Castagnola ponded turbidite mini-basin through analysis of a detailed base-to-top section measured in the central part of the basin. Vertical variations in facies characteristics, thickness ratio of mud cap vs. sandstone of event beds and net/gross are argued to be good proxies for pinpointing the stratigraphic transition from dominantly ponded deposition, where most of the flow is trapped by the confining topography, to a flow-stripping - dominated phase in which an increasingly large part of incoming flows can escape the basin by spilling over the enclosing topography. Thickness statistics of sandstones and mud caps of event beds from the case study show that in the initial stage of turbidite deposition only part of the mud of exceptionally large volume flows escaped the confining topography; as the basin was progressively infilled, nearly all inbound flows were affected by flow stripping, with part of the sand and most of the mud escaping the basin. In the latest recorded stage of deposition the abundance of by-pass features coupled with significant modification of the sandstone bed thickness population suggests that the turbidite system was no longer obstructed frontally, and could step forward onto a healed topography. In order to assess whether the documented trends of turbidite bed characteristics indicative of the 'fill to spill' transition could be recognised from wireline log data alone, synthetic logs were prepared by up-scaling the field data to resolutions typical of borehole geophysical log data. Vertical trends of average bed thickness and net/gross recognisable in the synthetic data suggest that the transition from ponded to spill-dominated situations should be resolvable in geophysical log data

    Influence of flow containment and substrate entrainment upon sandy hybrid event beds containing a co-genetic mud-clast-rich division

    Get PDF
    Individual sandstone beds containing a co-genetic mud-clast-rich (MCR) division are being increasingly described from the distal reaches of many deep-water fan systems. These deposits, termed hybrid event beds, are considered to record a flow whose composition and rheology changed significantly to become increasingly more argillaceous (clay-rich), MCR and turbulence-suppressed during the deposition of a single event bed. Studies of confined systems, in which gravity flows were affected by confining sea-floor topography, have documented similar deposits recording turbulence suppression in proximity to confining sea-floor topography (e.g., basin margins). In new research from a confined, contained system from the Castagnola Basin of NW Italy, lateral transects of individual sandstone beds 5 km in extent show that individual sandstone beds contain a co-genetic MCR division which is often; 1) extensive across the basin rather than localised adjacent to confining topography; 2) exhibits rapid, significant and repeated variation in depositional character over short length scales (tens to hundreds of metres), specifically in terms of the thickness of co-genetic MCR divisions and the size and abundance of clasts contained within them; and 3) exhibits variation in depositional character over larger length scales (> 1 km) which is non-systematic in relation to palaeoflow direction or increasing proximity towards the counter slope of the downstream confining northern basin margin. A suite of factors within the Castagnola Basin is thought to have resulted in the deposition of these co-genetic MCR divisions whose thickness and distribution are less predictable in relation to confining sea-floor topography than those described from other confined uncontained settings. Specific factors include; 1) recent and voluminous entrainment of muddy substrate at seemingly random locations across the basin floor and their support and transport within a high sediment concentration gravity flow; and 2) containment (ponding) of gravity flows within a confined basin, which is thought to have established extensive and complex three dimensional flow dynamics across the basin following flow interaction with multiple basin margins. This research highlights the role of entrainment of muddy substrate and subsequent transport processes of muddy substrate for developing co-genetic MCR divisions, as well as the importance of understanding the degree of containment depositional systems experienced when considering the spatial distribution of depositional facies, and thus reservoir quality, in topographically complex settings

    Dimethyl carbonate as a green alternative to acetonitrile in reversed-phase liquid chromatography. Part I: Separation of small molecules

    Get PDF
    : Nowadays, environmental problems are drawing the attention of governments and international organisations, which are therefore encouraging the transition to green industrial processes and approaches. In this context, chemists can help indicate a suitable direction. Beside the efforts focused on greening synthetic approaches, currently also analytical techniques and separations are under observation, especially those employing large volumes of organic solvents, such as reversed-phase liquid chromatography (RPLC). Acetonitrile has always been considered the best performing organic modifier for RPLC applications, due to its chemical features (complete miscibility in water, UV transparency, low viscosity etc); nevertheless, it suffers of severe shortcomings, and most importantly, it does not fully comply with Environmental, Health and Safety (EHS) requirements. For these reasons, alternative greener solvents are being investigated, especially easily available alcohols. In this work, chromatographic performance of the most common solvents used in reversed-phase chromatography, i.e., acetonitrile, ethanol and isopropanol, have been compared to a scarcely used solvent, dimethyl carbonate (DMC). The analytes of interest were two small molecules, caffeine and paracetamol, whose kinetics and retention behaviour obtained with the four solvents have been compared, and all contributions to band broadening have been assessed. Results about kinetic performance are very promising, indicating that a small amount (7 % v/v) of DMC is able to produce the same efficiency as a 2.5-times larger ACN volume (18 % v/v), and larger efficiency than alcohols. This paper reports, for the first time, fundamental studies concerning the mass transfer phenomena when DMC is used as an organic solvent in RPLC, and, together with the companion paper, represents the results of a research whose final aim was to discover whether DMC is suitable for chromatographic applications both in linear and preparative conditions

    A hierarchical multiple-point statistics simulation procedure for the 3D reconstruction of alluvial sediments

    Get PDF
    A correct representation of the heterogeneity of porous formations and of their preferential flow paths is crucial for a reliable modelization of the contaminant transport processes. Several geostatistical tools have been developed to tackle this challenge. Many of these tools are often applied in a multi-scale framework, where the geostatistical simulation is applied fist trying to reproduce the big scale features of the sedimentary formations, and finally to reproduce their small scale features. However, many of the developed multi-scale and hierarchical techniques have a quite complex work-flow and rely on diverse simulation methods. Here a simplified hierarchical simulation procedure is proposed, where only multiple-point statistics (MPS) is used to simulate the target heterogeneities at different scales. The simulation procedure is organized in a tree-like frame, where MPS is applied at each simulation branch using a simplified binary training image and the corresponding available conditioning data. At each simulation branch, the MPS simulation is performed in a sub- domain defined by one of the two facies codes simulated at the parent branch. The proposed procedure is tested in the three-dimensional (3D) reconstruction of two model blocks of alluvial sediments, using the available two-dimensional (2D) outcrop information as training images. It is compared against a non hierarchical MPS simulation procedure in terms of connectivity indicators and breakthrough curves obtained from 3D particle tracking numerical experiments. All the aforementioned tests are performed considering 100 equiprobable realizations for each simulation technique. This allows to make statistically reliable comparisons, and to extract statistical distributions of the transport parameters by fitting analytical curves to the results of the particle tracking experiments. These statistical distributions are used to perform one-dimensional transport experiments on spatial scales ten times bigger than the block scale using the Kolmogorov-Dmitriev approach in a Monte Carlo framework

    Origin of mud in turbidites and hybrid event beds: Insight from ponded mudstone caps of the Castagnola turbidite system (north‐west Italy)

    Get PDF
    The partitioning of different grain‐size classes in gravity flow deposits is one of the key characteristics used to infer depositional processes. Turbidites have relatively clean sandstones with most of their clay deposited as part of a mudstone cap or as a distal mudstone layer, whereas sand‐bearing debrites commonly comprise mixtures of sand grains and interstitial clay; hybrid event beds develop alternations of clean and dirty (clay‐rich) sandstones in varying proportions. Analysis of co‐genetic mudstone caps in terms of thickness and composition is a novel approach that can provide new insight into gravity flow depositional processes. Bed thickness data from the ponded Castagnola system show that turbidites contain more clay overall than do hybrid event beds. The Castagnola system is characterized by deposits of two very different petrographic types. Thanks to this duality, analyses of sandstone and mudstones composition allow inference of which proportion of the clay in each of the deposit types was acquired en route. In combination with standard sedimentological observations the new data allow insight into the likely characteristics of their parent flows. Clean turbidites were deposited by lower concentration, long duration, erosive, muddy turbidity currents which were more efficient at fractionating clay particles away from their basal layer. Hybrid event beds were deposited by shorter duration, higher‐concentration, less‐erosive sandier flows which were less efficient at clay fractionation. The results are consistent with data from other turbidite systems (for example, Marnoso‐arenacea). The approach represents a new method to infer the controls on the degree of clay partitioning in gravity flow deposits
    • 

    corecore