3,186 research outputs found
The breakdown of the municipality as caring platform: lessons for co-design and co-learning in the age of platform capitalism
If municipalities were the caring platforms of the 19-20th century sharing economy, how does care manifest in civic structures of the current period? We consider how platforms - from the local initiatives of communities transforming neighbourhoods, to the city, in the form of the local authority - are involved, trusted and/or relied on in the design of shared services and amenities for the public good. We use contrasting cases of interaction between local government and civil society organisations in Sweden and the UK to explore trends in public service provision. We look at how care can manifest between state and citizens and at the roles that co-design and co-learning play in developing contextually sensitive opportunities for caring platforms. In this way, we seek to learn from platforms in transition about the importance of co-learning in political and structural contexts and make recommendations for the co-design of (digital) platforms to care with and for civil society
High harmonic generation in a gas-filled hollow-core photonic crystal fiber
High harmonic generation (HHG) of intense infrared laser radiation (Ferray et al., J. Phys. B: At. Mol. Opt. Phys. 21:L31, 1988; McPherson et al., J. Opt. Soc. Am. B 4:595, 1987) enables coherent vacuum-UV (VUV) to soft-X-ray sources. In the usual setup, energetic femtosecond laser pulses are strongly focused into a gas jet, restricting the interaction length to the Rayleigh range of the focus. The average photon flux is limited by the low conversion efficiency and the low average power of the complex laser amplifier systems (Keller, Nature 424:831, 2003; SĂŒdmeyer et al., Nat. Photonics 2:599, 2008; Röser et al., Opt. Lett. 30:2754, 2005; Eidam et al., IEEE J. Sel. Top. Quantum Electron. 15:187, 2009) which typically operate at kilohertz repetition rates. This represents a severe limitation for many experiments using the harmonic radiation in fields such as metrology or high-resolution imaging. Driving HHG with novel high-power diode-pumped multi-megahertz laser systems has the potential to significantly increase the average photon flux. However, the higher average power comes at the expense of lower pulse energies because the repetition rate is increased by more than a thousand times, and efficient HHG is not possible in the usual geometry. So far, two promising techniques for HHG at lower pulse energies were developed: external build-up cavities (Gohle et al., Nature 436:234, 2005; Jones et al., Phys. Rev. Lett. 94:193, 2005) and resonant field enhancement in nanostructured targets (Kim et al., Nature 453:757, 2008). Here we present a third technique, which has advantages in terms of ease of HHG light extraction, transverse beam quality, and the possibility to substantially increase conversion efficiency by phase-matching (Paul et al., Nature 421:51, 2003; Ren et al., Opt. Express 16:17052, 2008; Serebryannikov et al., Phys. Rev. E (Stat. Nonlinear Soft Matter Phys.) 70:66611, 2004; Serebryannikov et al., Opt. Lett. 33:977, 2008; Zhang et al., Nat. Phys. 3:270, 2007). The interaction between the laser pulses and the gas occurs in a Kagome-type Hollow-Core Photonic Crystal Fiber (HC-PCF) (Benabid et al., Science 298:399, 2002), which reduces the detection threshold for HHG to only 200nJ. This novel type of fiber guides nearly all of the light in the hollow core (Couny et al., Science 318:1118, 2007), preventing damage even at intensities required for HHG. Our fiber guided 30-fs pulses with a pulse energy of more than 10ÎŒJ, which is more than five times higher than for any other photonic crystal fiber (Hensley et al., Conference on Lasers and Electro-Optics (CLEO), IEEE Press, New York, 2008
Synaptic interactions between GABA-immunoreactive profiles and the terminals of functionally defined myelinated nociceptors in the monkey and cat spinal cord
This study analyzes the synaptic interactions between the central terminals of A delta high threshold mechanoreceptors (A delta HTMs) and GABA-immunoreactive profiles. A delta HTM primary afferents from three monkeys and one cat were electrophysiologically identified and intracellularly labeled with HRP, and their terminal arborizations in laminae I and II of the sacrocaudal spinal cord were studied at the ultrastructural level. GABA-immunoreactive profiles in relation to A delta HTM terminals were demonstrated using postembedding colloidal gold techniques. Monkey A delta HTM terminals (n = 131) usually constituted the central element of synaptic glomeruli; they established large asymmetric synaptic contacts with 1-13 dendrites (modal value 2- 4) and were surrounded by 0-6 peripheral axon terminals (modal value 2- 3). The large majority (around 85%) of the peripheral axon terminals were GABA immunoreactive. They were found presynaptic to the A delta HTM terminal and/or to dendrites postsynaptic to the primary afferent terminal. Furthermore, all peripheral axon terminals found presynaptic to the A delta HTM terminals showed GABA immunoreactivity. Within a single A delta HTM fiber, this synaptic arrangement was found in 20-60% of its boutons. In addition, 28% of the postsynaptic dendritic profiles displayed weak GABA immunoreactivity. Some of them contained vesicles; however, only in a few cases did we observe synapses between a GABA- immunoreactive vesicle-containing dendrite and a dendritic profile postsynaptic to an A delta HTM terminal. Similar synaptology and interactions with GABA-immunoreactive profiles were displayed by the terminals of the single cat A delta HTM fiber studied. Our data support the hypothesis that GABA-containing neurons use both presynaptic and/or postsynaptic mechanisms to exert a powerful control, presumably inhibitory, over the transmission of nociceptive information between A delta HTM afferents and second-order neurons in monkey and cat spinal cord. Our results also imply that GABA may be released within the synaptic glomeruli formed by A delta HTM terminals either by local dendrites or by axon terminals. We discuss the possibility that these GABAergic synapses can be driven by inputs from both primary afferents and/or descending systems to modulate the transmission of nociceptive sensory information
Periaqueductal grey cyclooxygenase-dependent facilitation of C-nociceptive drive and encoding in dorsal horn neurons in the rat
The experience of pain is strongly affected by descending control systems originating in the brainstem ventrolateral periaqueductal grey (VL-PAG), which control the spinal processing of nociceptive information. A- and C-fibre nociceptors detect noxious stimulation, and have distinct and independent contributions to both the perception of pain quality (fast and slow pain, respectively) and the development of chronic pain. Evidence suggests a separation in the central processing of information arising from A- vs. C-nociceptors; for example, inhibition of the cyclooxygenase-1 (COX-1)âprostaglandin system within the VL-PAG alters spinal nociceptive reflexes evoked by C-nociceptor input in vivo via descending pathways, leaving A-nociceptor-evoked reflexes largely unaffected. As the spinal neuronal mechanisms underlying these different responses remain unknown, we determined the effect of inhibition of VL-PAG COX-1 on dorsal horn wide dynamic-range neurons evoked by C- vs. A-nociceptor activation. Inhibition of VL-PAG COX-1 in anaesthetised rats increased firing thresholds of lamina IVâV wide dynamic-range dorsal horn neurons in response to both A- and C-nociceptor stimulation. Importantly, wide dynamic-range dorsal horn neurons continued to faithfully encode A-nociceptive information, even after VL-PAG COX-1 inhibition, whereas the encoding of C-nociceptor information by wide dynamic-range spinal neurons was significantly disrupted. Dorsal horn neurons with stronger C-nociceptor input were affected by COX-1 inhibition to a greater extent than those with weak C-fibre input. These data show that the gain and contrast of C-nociceptive information processed in individual wide dynamic-range dorsal horn neurons is modulated by prostanergic descending control mechanisms in the VL-PAG
Healthier prisons: The role of a prison visitors' centre
Since the inception of the prison as a âsettingâ for health promotion, there has been a focus on how the health of those men and women who spend âtime insideâ can at least be maintained and if possible, enhanced, during their prison sentence. This paper presents findings from a mainly qualitative evaluation of a prison visitors' centre in the UK. It reports experiences of prisoners' families, prisoners, prison staff, the local community and the ways in which the visitors' centre has contributed positively to their health and well-being. In addition, key stakeholders were interviewed to ascertain the role this visitors' centre has in policy frameworks related to re-offending. The findings from this evaluation underscore how the visitors' centre improved the quality of visits, and contributed towards the maintenance of family ties through the help and support it provides for families and prisoners. The paper concludes by suggesting that visitors' centres are an essential part of a modern prison service helping to address the government's health inequalities agenda
Inner Coma Imaging of Comet Levy (1990c) with the Hubble Space Telescope
Observations of comet Levy (1990c) were carried out with the Hubble Space Telescope (HST) on UT 27 Sep 1990. At that time, both the heliocentric and geocentric distances were ~1 AU. The comet was imaged with the Wide Field Camera (WFC) through both red and blue filters, which were selected to isolate continuum emission peaking sharply at the nucleus. Each WFC pixel is 0."1 on a side, corresponding to 78 km at the comet. The longest exposures (4 sec) through the red filter had sufficient signal to noise that image deconvolution could be used to recover virtually the full spatial resolution of HST
Contrasting carbonate depositional systems for Pliocene cool-water limestones cropping out in central Hawke's Bay, New Zealand
Pliocene limestone formations in central Hawke's Bay (eastern North Island, New Zealand) accumulated on and near the margins of a narrow forearc basin seaway within the convergent Australia/Pacific plate boundary zone. The active tectonic setting and varied paleogeographic features of the limestone units investigated, in association with probable glacioeustatic sea-level fluctuations, resulted in complex stratigraphic architectures and contrasting types of carbonate accumulation on either side of the seaway. Here, we recognise recurring patterns of sedimentary facies, and sequences and systems tracts bounded by key physical surfaces within the limestone sheets. The facies types range from Bioclastic (B) to Siliciclastic (S) end-members via Mixed (M) carbonate-siliciclastic deposits. Skeletal components are typical cool-water associations dominated by epifaunal calcitic bivalves, bryozoans, and especially barnacles. Siliciclastic contents vary from one formation to another, and highlight siliciclastic-rich limestone units in the western ranges versus siliciclastic-poor limestone units in the eastern coastal hills. Heterogeneities in facies types, stratal patterns, and also in diagenetic pathways between eastern and western limestone units are considered to originate in the coeval occurrence in different parts of the forearc basin of two main morphodynamic carbonate systems over time
High-efficiency cross-phase modulation in a gas-filled waveguide
Strong cross-Kerr nonlinearities have been long sought after for quantum information applications. Recent work has shown that they are intrinsically unreliable in traveling-wave configurations: cavity configurations avoid this, but require knowledge of both the nonlinearity and the loss. Here we present a detailed systematic study of cross-phase modulation and absorption in an Rb vapor confined within a hollow-core photonic crystal fiber. Using a two-photon transition, we observe phase modulations of up to pi rad with a signal power of 25 mu W, corresponding to a nonlinear Kerr coefficient, n(2), of 0.8 x 10(-6) cm(2)/W, or 1.3 x 10(-6) rad per photon
Collective excitations of trapped Bose condensates in the energy and time domains
A time-dependent method for calculating the collective excitation frequencies
and densities of a trapped, inhomogeneous Bose-Einstein condensate with
circulation is presented. The results are compared with time-independent
solutions of the Bogoliubov-deGennes equations. The method is based on
time-dependent linear-response theory combined with spectral analysis of
moments of the excitation modes of interest. The technique is straightforward
to apply, is extremely efficient in our implementation with parallel FFT
methods, and produces highly accurate results. The method is suitable for
general trap geometries, condensate flows and condensates permeated with vortex
structures.Comment: 6 pages, 3 figures small typos fixe
- âŠ