4,127 research outputs found

    Headwaters are critical reservoirs of microbial diversity for fluvial networks

    Get PDF
    Streams and rivers form conspicuous networks on the Earth and are among nature's most effective integrators. Their dendritic structure reaches into the terrestrial landscape and accumulates water and sediment en route from abundant headwater streams to a single river mouth. The prevailing view over the last decades has been that biological diversity also accumulates downstream. Here, we show that this pattern does not hold for fluvial biofilms, which are the dominant mode of microbial life in streams and rivers and which fulfil critical ecosystem functions therein. Using 454 pyrosequencing on benthic biofilms from 114 streams, we found that microbial diversity decreased from headwaters downstream and especially at confluences. We suggest that the local environment and biotic interactions may modify the influence of metacommunity connectivity on local biofilm biodiversity throughout the network. In addition, there was a high degree of variability in species composition among headwater streams that could not be explained by geographical distance between catchments. This suggests that the dendritic nature of fluvial networks constrains the distributional patterns of microbial diversity similar to that of animals. Our observations highlight the contributions that headwaters make in the maintenance of microbial biodiversity in fluvial networks

    Alimentación nocturna bajo iluminación artificial de la Gaviota Capucho-Café (Larus Maculipennis) en el muelle de Puerto Madryn (Chubut, Argentina)

    Get PDF
    Se describe la alimentación nocturna en un ambiente marino de la Gaviota Capucho Café (Larus maculipennis) en noviembre de 2009. Las gaviotas se congregaron durante la noche en el extremo de un muelle de 800 m de extensión en Puerto Madryn (Chubut, Argentina). Las aguas alrededor del extremo del muelle estaban iluminadas por potentes luces que atraían a muchas presas pequeñas a la superficie. Varios cientos de gaviotas, presumiblemente individuos reproductivos provenientes de una colonia cercana, se alimentaron diariamente en este sitio usando diferentes técnicas de alimentación y capturando presas de diferentes especies y tallas. Las presas potenciales fueron capturadas para su identificación a través de muestreos verticales con una red de plancton. Las presas que seguramente capturaron las gaviotas eran Isopoda de tamaño relativamente grande (Idothea sp.), Polychaeta (Platynereis sp.) y larvas de peces (Patagonotothen sp.), así como crustáceos de menor tamaño, mayormente Amphipoda (Phoxocephalidae) y Mysidacea. Las presas pequeñas fueron capturadas mientras las gaviotas nadaban, mediante el picoteo en superficie, mientras que las más grandes fueron capturadas sobrevolando bajo sobre la superficie y a través de zambullidas superficiales. Durante el día, solo unas pocas gaviotas se aventuraron dentro de la bahía, indicando que tomaron ventaja de la oportunidad de alimentación nocturna facilitada por la iluminación artificial. La clara ganancia a corto plazo de la explotación de esta novedosa oportunidad de alimentación podría ser compensada por posibles amenazas tales como una mayor vulnerabilidad a los predadores o la contaminación por derrame de hidrocarburos de los barcos amarrados junto al muelle.This paper describes nocturnal, marine feeding behaviour in the Brown-hooded Gull (Larus maculipennis) in November 2009. The gulls assembled at night at the end of a long pier, running 800 m offshore into the Golfo Nuevo, at Puerto Madryn, Chubut Province, Argentina. Powerful lights predictably lighted the water around the end of the pier and attracted many small prey animals to the surface. Several hundreds of gulls, presumed to be local breeders, came every night to feed on this bounty, using various feeding techniques and taking several prey species and sizes. Potential prey items were caught to be identified by vertical plankton hauls. The gulls most likely took relatively large Isopoda (Idothea sp.), Polychaeta (Platynereis sp.) and fish larvae (Patagonotothen sp.) as well as smaller crustaceans, mostly Amphipoda (Phoxocephalidae) and Mysidacea. The gulls caught small prey items while swimming, by rapid surface pecking, while they hunted the larger prey species by flying low over the water and performing shallow, vertical plunge-dives. During daylight, only few gulls ventured from land into the bay, indicating that they took advantage of the nocturnal feeding opportunity, facilitated by artificial lighting. The clear short-term gain of exploiting this novel foraging opportunity may be offset by potential threats such as increased vulnerability to predators or contamination by oil spills from ships moored along the pier.Fil: Leopold, Mardik F.. Institute for Marine Resources and Ecosystem Studies; Países BajosFil: Philippart, Catharina J.M.. Royal Netherlands Institute for Sea Research; Países BajosFil: Yorio, Pablo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Nacional Patagónico; Argentina. Wildlife Conservation Society; Estados Unido

    Ideally embedded space-times

    Full text link
    Due to the growing interest in embeddings of space-time in higher-dimensional spaces we consider a specific type of embedding. After proving an inequality between intrinsically defined curvature invariants and the squared mean curvature, we extend the notion of ideal embeddings from Riemannian geometry to the indefinite case. Ideal embeddings are such that the embedded manifold receives the least amount of tension from the surrounding space. Then it is shown that the de Sitter spaces, a Robertson-Walker space-time and some anisotropic perfect fluid metrics can be ideally embedded in a five-dimensional pseudo-Euclidean space.Comment: layout changed and typos corrected; uses revtex

    High Resolution He-like Argon And Sulfur Spectra From The PSI ECRIT

    Full text link
    We present new results on the X-ray spectroscopy of multicharged argon, sulfur and chlorine obtained with the Electron Cyclotron Resonance Ion Trap (ECRIT) in operation at the Paul Scherrer Institut (Villigen, Switzerland). We used a Johann-type Bragg spectrometer with a spherically-bent crystal, with an energy resolution of about 0.4 eV. The ECRIT itself is of a hybrid type, with a superconducting split coil magnet, special iron inserts which provides the mirror field, and a permanent magnetic hexapole. The high frequency was provided by a 6.4 GHz microwave emitter. We obtained high intensity X-ray spectra of multicharged F-like to He-like argon, sulfur and chlorine with one 1s hole. In particular, we observed the 1s2s^{3}S_1 \to 1s^2^{1}S_0 M1 and 1s2p^{3}P_2 \to 1s^2^{1}S_0 M2 transitions in He-like argon, sulfur and chlorine with unprecedented statistics and resolution. The energies of the observed lines are being determined with good accuracy using the He-like M1 line as a reference

    Electrochemical Characterization of Self-Assembled Monolayers on Gold Substrates Derived from Thermal Decomposition of Monolayer-Protected Cluster Films

    Get PDF
    Networked films of monolayer-protected clusters (MPCs), alkanethiolate-stabilized gold nanoparticles, can be thermally decomposed to form stable gold on glass substrates that are subsequently modified with self-assembled monolayers (SAMs) for use as modified electrodes. Electrochemical assessment of these SAM-modified gold substrates, including double-layer capacitance measurements, linear sweep desorption of the alkanethiolates, and diffusional redox probing, all show that SAMs formed on gold supports formed from thermolysis of MPC films possess substantially higher defect density compared to SAMs formed on traditional evaporated gold. The density of defects in the SAMs on thermolyzed gold is directly related to the strategies used to assemble the MPC film prior to thermolysis. Specifically, gold substrates formed from thermally decomposing MPC films formed with electrostatic bridges between carboxylic acid-modified MPCs and metal ion linkers are particularly sensitive to the degree of metal exposure during the assembly process. While specific metal dependence was observed, metal concentration within the MPC precursor film was determined to be a more significant factor. Specific MPC film linking strategies and pretreatment methods that emphasized lower metal exposure resulted in gold films that supported SAMs of lower defect density. The defect density of a SAM-modified electrode is shown to be critical in certain electrochemical experiments such as protein monolayer electrochemistry of adsorbed cytochrome c. While the thermal decomposition of nanoparticle film assemblies remains a viable and interesting technique for coating both flat and irregular shaped substrates, this study provides electrochemical assessment tools and tactics for determining and controlling SAM defect density on this type of gold structure, a property critical to their effective use in subsequent electrochemical applications

    Diffusive Ionization of Relativistic Hydrogen-Like Atom

    Full text link
    Stochastic ionization of highly excited relativistic hydrogenlike atom in the monochromatic field is investigated. A theoretical analisis of chaotic dynamics of the relativistic electron based on Chirikov criterion is given for the cases of one- and three-dimensional atoms. Critical value of the external field is evaluated analitically. The diffusion coefficient and ionization time are calculated.Comment: 13 pages, latex, no figures, submitted to PR

    Coarse grained description of the protein folding

    Full text link
    We consider two- and three-dimensional lattice models of proteins which were characterized previously. We coarse grain their folding dynamics by reducing it to transitions between effective states. We consider two methods of selection of the effective states. The first method is based on the steepest descent mapping of states to underlying local energy minima and the other involves an additional projection to maximally compact conformations. Both methods generate connectivity patterns that allow to distinguish between the good and bad folders. Connectivity graphs corresponding to the folding funnel have few loops and are thus tree-like. The Arrhenius law for the median folding time of a 16-monomer sequence is established and the corresponding barrier is related to easily identifiable kinetic trap states.Comment: REVTeX, 9 pages, 15 EPS figures, to appear in Phys. Rev.

    The Dynamics of a Meandering River

    Full text link
    We present a statistical model of a meandering river on an alluvial plane which is motivated by the physical non-linear dynamics of the river channel migration and by describing heterogeneity of the terrain by noise. We study the dynamics analytically and numerically. The motion of the river channel is unstable and we show that by inclusion of the formation of ox-bow lakes, the system may be stabilised. We then calculate the steady state and show that it is in agreement with simulations and measurements of field data.Comment: Revtex, 12 pages, 2 postscript figure

    Morphodynamics of a width-variable gravel bed stream: new insights on pool-riffle formation from physical experiments

    Get PDF
    Field observations, experiments, and numerical simulations suggest that pool-riffles along gravel bed mountain streams develop due to downstream variations of channel width. Where channels narrow, pools are observed, and at locations of widening, riffles occur. Based on previous work, we hypothesize that the bed profile is coupled to downstream width variations through momentum fluxes imparted to the channel surface, which scale with downstream changes of flow velocity. We address this hypothesis with flume experiments understood through scaling theory. Our experiments produce pool-riffle like structures across average Shields stresses t* that are a factor 1.5–2 above the threshold mobility condition of the experimental grain size distribution. Local topographic responses are coupled to channel width changes, which drive flows to accelerate or decelerate on average, for narrowing and widening, respectively. We develop theory which explains the topography-width-velocity coupling as a ratio of two reinforcing timescales. The first timescale captures the time necessary to do work to the channel bed. The second timescale characterizes the relative time magnitude of momentum transfer from the flowing fluid to the channel bed surface. Riffle-like structures develop where the work and momentum timescales are relatively large, and pools form where the two timescales are relatively small. We show that this result helps to explain local channel bed slopes along pool-riffles for five data sets representing experimental, numerical, and natural cases, which span 2 orders of magnitude of reach-averaged slope. Additional model testing is warranted.Peer ReviewedPostprint (published version
    • …
    corecore