131 research outputs found

    Deep Brain Stimulation of the Pallidum is Effective and Might Stabilize Striatal D2 Receptor Binding in Myoclonus–Dystonia

    Get PDF
    Purpose: To assess clinical efficacy of deep brain stimulation (DBS) of the pallidum in Myoclonus–Dystonia (M–D) patients, and to compare pre- and post-operative striatal dopamine D2 receptor availability. Methods: Clinical parameters were scored using validated rating scales for myoclonus and dystonia. Dopamine D2 receptor binding of three patients was studied before surgery and approximately 2 years post-operatively using 123-I-iodobenzamide Single Photon Emission Computed Tomography. Two patients who did not undergo surgery served as controls. Results: Clinically, the three M–D patients improved 83, 17, and 100%, respectively on the myoclonus rating scale and 78, 23, and 65% on the dystonia rating scale after DBS. Dopamine D2 receptor binding did not change after surgery. In the two control subjects, binding has lowered further. Conclusion: These findings confirm that DBS of the pallidum has beneficial effects on motor symptoms in M–D and suggest this procedure might stabilize dopamine D2 receptor binding

    Evolution of an eruptive flare loop system

    Get PDF
    <p><b>Context:</b> Flares, eruptive prominences and coronal mass ejections are phenomena where magnetic reconnection plays an important role. However, the location and the rate of the reconnection, as well as the mechanisms of particle interaction with ambient and chromospheric plasma are still unclear.</p> <p><b>Aims:</b> In order to contribute to the comprehension of the above mentioned processes we studied the evolution of the eruptive flare loop system in an active region where a flare, a prominence eruption and a CME occurred on August 24, 2002.</p> <p><b>Methods:</b> We measured the rate of expansion of the flare loop arcade using TRACE 195 Å images and determined the rising velocity and the evolution of the low and high energy hard X-ray sources using RHESSI data. We also fitted HXR spectra and considered the radio emission at 17 and 34 GHZ.</p> <p><b>Results:</b> We observed that the top of the eruptive flare loop system initially rises with a linear behavior and then, after 120 mn from the start of the event registered by GOES at 1–8 Å, it slows down. We also observed that the heating source (low energy X-ray) rises faster than the top of the loops at 195 Å and that the high energy X-ray emission (30–40 keV) changes in time, changing from footpoint emission at the very onset of the flare to being coincident during the flare peak with the whole flare loop arcade.</p> <p><b>Conclusions:</b> The evolution of the loop system and of the X-ray sources allowed us to interpret this event in the framework of the Lin & Forbes model (2000), where the absolute rate of reconnection decreases when the current sheet is located at an altitude where the Alfvén speed decreases with height. We estimated that the lower limit for the altitude of the current sheet is km. Moreover, we interpreted the unusual variation of the high energy HXR emission as a manifestation of the non thermal coronal thick-target process which appears during the flare in a manner consistent with the inferred increase in coronal column density.</p&gt

    Hemodynamic and EEG Time-Courses During Unilateral Hand Movement in Patients with Cortical Myoclonus. An EEG-fMRI and EEG-TD-fNIRS Study.

    Get PDF
    Multimodal human brain mapping has been proposed as an integrated approach capable of improving the recognition of the cortical correlates of specific neurological functions. We used simultaneous EEG-fMRI (functional magnetic resonance imaging) and EEG-TD-fNIRS (time domain functional near-infrared spectroscopy) recordings to compare different hemodynamic methods with changes in EEG in ten patients with progressive myoclonic epilepsy and 12 healthy controls. We evaluated O(2)Hb, HHb and Blood oxygen level-dependent (BOLD) changes and event-related desynchronization/synchronization (ERD/ERS) in the alpha and beta bands of all of the subjects while they performed a simple motor task. The general linear model was used to obtain comparable fMRI and TD-fNIRS activation maps. We also analyzed cortical thickness in order to evaluate any structural changes. In the patients, the TD-NIRS and fMRI data significantly correlated and showed a significant lessening of the increase in O(2)Hb and the decrease in BOLD. The post-movement beta rebound was minimal or absent in patients. Cortical thickness was moderately reduced in the motor area of the patients and correlated with the reduction in the hemodynamic signals. The fMRI and TD-NIRS results were consistent, significantly correlated and showed smaller hemodynamic changes in the patients. This finding may be partially attributable to mild cortical thickening. However, cortical hyperexcitability, which is known to generate myoclonic jerks and probably accounts for the lack of EEG beta-ERS, did not reflect any increased energy requirement. We hypothesize that this is due to a loss of inhibitory neuronal components that typically fire at high frequencies

    The Effectiveness of Deep Brain Stimulation in Dystonia:A Patient-Centered Approach

    Get PDF
    Background: To systematically evaluate the effectiveness of deep brain stimulation of the globus pallidus internus (GPi-DBS) in dystonia on pre-operatively set functional priorities in daily living. Methods: Fifteen pediatric and adult dystonia patients (8 male; median age 32y, range 8-65) receiving GPi-DBS were recruited. All patients underwent a multidisciplinary evaluation before and 1-year post DBS implantation. The Canadian Occupational Performance Measure (COPM) first identified and then measured changes in functional priorities. The Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) was used to evaluate dystonia severity. Results: Priorities in daily functioning substantially varied between patients but showed significant improvements on performance and satisfaction after DBS. Clinically significant COPM-score improvements were present in 7/8 motor responders, but also in 4/7 motor non-responders. Discussion: The use of a patient-oriented approach to measure GPi-DBS effectiveness in dystonia provides an unique insight in patients' priorities and demonstrates that tangible improvements can be achieved irrespective of motor response. Highlights: Functional priorities in life of dystonia patients and their caregivers vary greatlyThe effect of DBS on functional priorities did not correlate with motor outcomeHalf of the motor 'non-responder' patients reported important changes in their prioritiesThe effect of DBS in dystonia should not be measured by motor outcome alone

    Dystonia management: what to expect from the future? The perspectives of patients and clinicians within DystoniaNet Europe

    Get PDF
    Improved care for people with dystonia presents a number of challenges. Major gaps in knowledge exist with regard to how to optimize the diagnostic process, how to leverage discoveries in pathophysiology into biomarkers, and how to develop an evidence base for current and novel treatments. These challenges are made greater by the realization of the wide spectrum of symptoms and difficulties faced by people with dystonia, which go well-beyond motor symptoms. A network of clinicians, scientists, and patients could provide resources to facilitate information exchange at different levels, share mutual experiences, and support each other's innovative projects. In the past, collaborative initiatives have been launched, including the American Dystonia Coalition, the European Cooperation in Science and Technology (COST-which however only existed for a limited time), and the Dutch DystonieNet project. The European Reference Network on Rare Neurological Diseases includes dystonia among other rare conditions affecting the central nervous system in a dedicated stream. Currently, we aim to broaden the scope of these initiatives to a comprehensive European level by further expanding the DystoniaNet network, in close collaboration with the ERN-RND. In line with the ERN-RND, the mission of DystoniaNet Europe is to improve care and quality of life for people with dystonia by, among other endeavors, facilitating access to specialized care, overcoming the disparity in education of medical professionals, and serving as a solid platform to foster international clinical and research collaborations. In this review, both professionals within the dystonia field and patients and caregivers representing Dystonia Europe highlight important unsolved issues and promising new strategies and the role that a European network can play in activating them.Neurological Motor Disorder

    Quantitative MRI Harmonization to Maximize Clinical Impact: The RIN–Neuroimaging Network

    Get PDF
    Neuroimaging studies often lack reproducibility, one of the cardinal features of the scientific method. Multisite collaboration initiatives increase sample size and limit methodological flexibility, therefore providing the foundation for increased statistical power and generalizable results. However, multisite collaborative initiatives are inherently limited by hardware, software, and pulse and sequence design heterogeneities of both clinical and preclinical MRI scanners and the lack of benchmark for acquisition protocols, data analysis, and data sharing. We present the overarching vision that yielded to the constitution of RIN-Neuroimaging Network, a national consortium dedicated to identifying disease and subject-specific in-vivo neuroimaging biomarkers of diverse neurological and neuropsychiatric conditions. This ambitious goal needs efforts toward increasing the diagnostic and prognostic power of advanced MRI data. To this aim, 23 Italian Scientific Institutes of Hospitalization and Care (IRCCS), with technological and clinical specialization in the neurological and neuroimaging field, have gathered together. Each IRCCS is equipped with high- or ultra-high field MRI scanners (i.e., ≥3T) for clinical or preclinical research or has established expertise in MRI data analysis and infrastructure. The actions of this Network were defined across several work packages (WP). A clinical work package (WP1) defined the guidelines for a minimum standard clinical qualitative MRI assessment for the main neurological diseases. Two neuroimaging technical work packages (WP2 and WP3, for clinical and preclinical scanners) established Standard Operative Procedures for quality controls on phantoms as well as advanced harmonized quantitative MRI protocols for studying the brain of healthy human participants and wild type mice. Under FAIR principles, a web-based e-infrastructure to store and share data across sites was also implemented (WP4). Finally, the RIN translated all these efforts into a large-scale multimodal data collection in patients and animal models with dementia (i.e., case study). The RIN-Neuroimaging Network can maximize the impact of public investments in research and clinical practice acquiring data across institutes and pathologies with high-quality and highly-consistent acquisition protocols, optimizing the analysis pipeline and data sharing procedures

    Cognitive and behavioural effects of chronic stimulation of the subthalamic nucleus in patients with Parkinson's disease

    Get PDF
    Objective: To investigate cognitive and behavioural effects of bilateral lead implants for high frequency stimulation (HFS) of the subthalamic nucleus in patients with Parkinson's disease; and to discriminate between HFS and the effects of surgical intervention on cognitive function by carrying out postoperative cognitive assessments with the stimulators turned on or off. Methods: Motor, cognitive, behavioural, and functional assessments were undertaken in 20 patients with Parkinson's disease before implantation and then at three, six, and 12 months afterwards. Nine patients were also examined 18 months after surgery. Postoperative cognitive assessments were carried out with stimulators turned off at three and 18 months, and turned on at six and 12 months. Results: Cognitive assessment showed a significant postoperative decline in performance on tasks of letter verbal fluency (across all postoperative assessments, but more pronounced at three months) and episodic verbal memory (only at three months, with stimulators off). At three, six, and 12 months after surgery, there was a significant improvement in the mini-mental state examination and in a task of executive function (modified Wisconsin card sorting test). On all postoperative assessments, there was an improvement in parkinsonian motor symptoms, quality of life, and activities of daily living while off antiparkinsonian drugs. A significant postoperative decrease in depressive and anxiety symptoms was observed across all assessments. Similar results were seen in the subgroup of nine patients with an 18 month follow up. Following implantation, three patients developed transient manic symptoms and one showed persistent psychic akinesia. Conclusions: Bilateral HFS of the subthalamic nucleus is a relatively safe procedure with respect to long term cognitive and behavioural morbidity, although individual variability in postoperative cognitive and behavioural outcome invites caution. Stimulation of the subthalamic nucleus does not per se appear to impair cognitive performance in patients with Parkinson's disease and may alleviate the postpoperative decline in verbal fluency

    Differential diagnosis of neurodegenerative dementias with the explainable MRI based machine learning algorithm MUQUBIA

    Get PDF
    Biomarker-based differential diagnosis of the most common forms of dementia is becoming increasingly important. Machine learning (ML) may be able to address this challenge. The aim of this study was to develop and interpret a ML algorithm capable of differentiating Alzheimer’s dementia, frontotemporal dementia, dementia with Lewy bodies and cognitively normal control subjects based on sociodemographic, clinical, and magnetic resonance imaging (MRI) variables. 506 subjects from 5 databases were included. MRI images were processed with FreeSurfer, LPA, and TRACULA to obtain brain volumes and thicknesses, white matter lesions and diffusion metrics. MRI metrics were used in conjunction with clinical and demographic data to perform differential diagnosis based on a Support Vector Machine model called MUQUBIA (Multimodal Quantification of Brain whIte matter biomArkers). Age, gender, Clinical Dementia Rating (CDR) Dementia Staging Instrument, and 19 imaging features formed the best set of discriminative features. The predictive model performed with an overall Area Under the Curve of 98%, high overall precision (88%), recall (88%), and F1 scores (88%) in the test group, and good Label Ranking Average Precision score (0.95) in a subset of neuropathologically assessed patients. The results of MUQUBIA were explained by the SHapley Additive exPlanations (SHAP) method. The MUQUBIA algorithm successfully classified various dementias with good performance using cost-effective clinical and MRI information, and with independent validation, has the potential to assist physicians in their clinical diagnosis
    corecore