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Differential diagnosis 
of neurodegenerative dementias 
with the explainable MRI based 
machine learning algorithm 
MUQUBIA
Silvia De Francesco 1*, Claudio Crema 1, Damiano Archetti 1, Cristina Muscio 2,3, 
Robert I. Reid 4, Anna Nigri 5, Maria Grazia Bruzzone 5, Fabrizio Tagliavini 6, Raffaele Lodi 7,8, 
Egidio D’Angelo 9,10, Brad Boeve 11, Kejal Kantarci 12, Michael Firbank 13, John‑Paul Taylor 13, 
Pietro Tiraboschi 3, Alberto Redolfi 1 & for the ADNI, Frontotemporal Lobar Degeneration 
Neuroimaging; NIA Alzheimer’s Disease Centers; and the RIN – Neuroimaging Network *

Biomarker‑based differential diagnosis of the most common forms of dementia is becoming 
increasingly important. Machine learning (ML) may be able to address this challenge. The aim 
of this study was to develop and interpret a ML algorithm capable of differentiating Alzheimer’s 
dementia, frontotemporal dementia, dementia with Lewy bodies and cognitively normal control 
subjects based on sociodemographic, clinical, and magnetic resonance imaging (MRI) variables. 
506 subjects from 5 databases were included. MRI images were processed with FreeSurfer, LPA, 
and TRACULA to obtain brain volumes and thicknesses, white matter lesions and diffusion metrics. 
MRI metrics were used in conjunction with clinical and demographic data to perform differential 
diagnosis based on a Support Vector Machine model called MUQUBIA (Multimodal Quantification 
of Brain whIte matter biomArkers). Age, gender, Clinical Dementia Rating (CDR) Dementia Staging 
Instrument, and 19 imaging features formed the best set of discriminative features. The predictive 
model performed with an overall Area Under the Curve of 98%, high overall precision (88%), recall 
(88%), and F1 scores (88%) in the test group, and good Label Ranking Average Precision score (0.95) 
in a subset of neuropathologically assessed patients. The results of MUQUBIA were explained by 
the SHapley Additive exPlanations (SHAP) method. The MUQUBIA algorithm successfully classified 
various dementias with good performance using cost‑effective clinical and MRI information, and with 
independent validation, has the potential to assist physicians in their clinical diagnosis.

Neurodegenerative dementias are a common and increasing cause of mortality and disability worldwide, particu-
larly in older  age1. The most common form of neurodegenerative dementia worldwide is Alzheimer’s dementia 
(AD), but recent epidemiological studies and refinement of new clinical criteria have shown that frontotemporal 
dementia (FTD) and dementia with Lewy bodies (DLB) are also common  forms2. Specifically, DLB accounts for 
5–7% of all dementias in the  elderly3, FTD about 7%4, with one in four cases occurring late in  life5, while AD may 
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contribute to 60–70% of cases  overall6. These neurodegenerative dementias are heterogeneous in their clinical 
presentation and underlying pathophysiology, although they share overlapping  features7.

Biomarkers provide a powerful approach to understand the spectrum of neurological diseases by identify-
ing them from the earliest manifestations to the final  stages8. Increased diagnostic accuracy allows more precise 
prognostic approaches and often leads to specific treatments and optimal patient  care9. In this context, it is 
important to determine which diagnostic markers can most reliably identify the different pathologies that lead 
to dementia. The main challenge for researchers and clinicians is to determine biomarkers that not only identify 
AD but can simultaneously distinguish between patients with FTD, DLB and cognitively normal controls (CN). 
Currently, imaging biomarkers assessed by magnetic resonance imaging (MRI) in conjunction with clinical 
examinations and neurocognitive assessments are the most commonly used tests to diagnose neurodegenera-
tive  dementias10. In recent years, several MRI-based imaging sequences or modalities have been introduced into 
clinical practice. The most commonly used MRI sequences are: structural T1-weighted 3D (T13D) and T2 Fluid 
Attenuated Inversion Recovery (FLAIR) images, which provide morphological measurements of the brain. In 
addition, Diffusion Tensor Imaging (DTI) is a well-established technique that is particularly useful for studying 
white matter (WM)  integrity11.

The development of accurate image analysis pipelines combined with advanced classification methods could 
improve differential  diagnosis12. Indeed, automated MRI segmentation tools can systematically generate brain 
morphometric features with minimal operator-differences, although a limitation is that some of these tools 
require a lot of processing time and computational power.

The best-known segmentation algorithms are FreeSurfer (FS), which can extract volume, area and thickness 
of many brain regions of interest (ROI) and the Lesion Prediction Algorithm (LPA), which can quantify WM 
hyperintensities. Both algorithms have been validated against manual raters and performed  well13–15. As for 
DTI analysis, TRActs Constrained by UnderLying Anatomy (TRACULA) is one of the best validated tools for 
reconstructing WM  pathways16.

The results of automated MRI pipelines can be used to develop machine learning (ML) tools with good clas-
sification performance. Support Vector Machines (SVM) are among the widely used supervised ML algorithms 
because they are easy to implement while being effective in diagnostic classification  tasks17,18. In some cases, 
imaging variables can be used in conjunction with clinical and neuropsychological variables as input to multivari-
ate data analyses and ML  algorithms19. These models have been shown to be an effective strategy for identifying 
features capable of discriminating between different classes and subtypes of  disease20,21, with results comparable 
to or better than neuropsychological tests  alone22,23.

Indeed, ML in neuroscience is an ever-growing area of research based on learning relationships from large 
and complex data sets with the ability to apply the learned rules to other similar unseen data. Often, these tools 
appear to be able to detect brain patterns that are beyond human perception and can help clinicians to high-
light and interpret medical  findings24. To this end, tools for global and local interpretability of ML models have 
recently been  developed25.

The present study was conducted within the framework of the Italian Network for Neuroscience and Neurore-
habilitation (RIN) (https:// www. reten euros cienze. it/ en/), established in 2017 by the Italian Ministry of Health. 
The RIN (1) promotes collaboration among the National Research Hospitals (IRCCS), (2) facilitates the dis-
semination of information on clinical/scientific community, and (3) promotes the use of harmonized protocols 
and advanced ML tools to enhance clinical  practice26–28.

With this background, we developed and explained how our ML algorithm classified subjects into the four 
diagnostic classes (i.e.: AD, FTD, DLB, CN) based on sociodemographic, clinical, and imaging data. Our objec-
tives were to: (1) discover the most informative combination of biomarkers to distinguish the different forms of 
dementia; (2) investigate the pathophysiological role of WM alterations multimodally; (3) provide an interpreta-
tion of how MUltimodal QUantification of Brain whIte matter biomArkers in dementia (MUQUBIA) works.

Methods
Study design
This study included the following steps: data preprocessing, selection of discriminative features, classification of 
subjects, SHapley Additive exPlanations (SHAP) analyses.

MRI images were processed with automated tools to extract the volume and thickness of cortical and sub-
cortical brain regions, WM lesions, and WM diffusion metrics. All these values were used to train and test the 
MUQUBIA model for classification into diagnostic groups with a hold-out strategy.

Data
Subjects with a clinical diagnosis of AD, FTD, DLB, or CN were selected from 5 data sets.

The databases used for data collection were:

• Alzheimer’s Disease Neuroimaging Initiative (ADNI)29: 84 AD, 15 DLB (from Neuropathology Data, http:// 
adni. loni. usc. edu/ metho ds/ neuro path- metho ds/), 80 CN;

• Frontotemporal Lobar Degeneration Neuroimaging Initiative (FTLDNI): 135 FTD, 10 CN;
• National Alzheimer’s Coordinating Center (NACC)30: 26 AD, 27 DLB, 18 CN;
• NIH Parkinson’s Disease Biomarkers Program (PDBP)31: 60 DLB;
• Newcastle University, Newcastle upon  Tyne32–35: 51 DLB.

The FTLDNI database contained sufficient FTD data for our purposes. All three FTD subtypes (i.e.: behav-
ioural variant, semantic variant, and progressive non-fluent aphasia) were considered. AD and CN were selected 

https://www.reteneuroscienze.it/en/
http://adni.loni.usc.edu/methods/neuropath-methods/
http://adni.loni.usc.edu/methods/neuropath-methods/
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from a larger sample to avoid size imbalance. For these three classes, only subjects with all three available 
sequences at the same time-point and DTI directions greater than 12 were included. Because there were no 
available open access databases of DLB patients with all three sequences needed for this study, we also included 
subjects with at least one sequence for the DLB group (Supplementary Table S2), thus improving the sample 
size and allowing more accurate data imputation. A sample of no less than 100 subjects was assembled for each 
diagnostic class. Sociodemographic, clinical, and imaging variables were collected for all subjects. Neuropsycho-
logical test scores were collected in our study but not included in the analysis because the assessment protocol 
for CN does not always include neuropsychological characterization. The clinical assessment used was the global 
score of the Clinical Dementia Rating (CDR) Dementia Staging Instrument.

Supplementary Table S1 lists the diagnostic and selection criteria for each study considered. For a complete 
list of subjects, diagnoses, and data sets used in this study see Supplementary Table S2.

MR imaging
Data used in the preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 as a public–private partnership, led by 
Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial mag-
netic resonance imaging (MRI), positron emission tomography (PET), other biological markers, and clinical 
and neuropsychological assessment can be combined to measure the progression of mild cognitive impairment 
(MCI) and early Alzheimer’s disease (AD).

ADNI and FTLDNI data were collected from the Imaging Data Archive (IDA) web-portal of the Laboratory 
of NeuroImaging (LONI) (http:// adni. loni. usc. edu).

NACC and PDBP data were downloaded from their respective web portals: https:// naccd ata. org/ and https:// 
pdbp. ninds. nih. gov/.

The Newcastle data were provided directly by the Translational and Clinical Research Institute, Newcastle 
University.

Table 1 reports the imaging characteristics for each sequence and data set. Combining data from multiple 
hospitals is useful to build ML models that are invariant to systematic inter-scanner effects and to overcome 
differences in field strengths and acquisition  protocols36.

Pipelines for image processing
N4 correction, from Advanced Normalization Tools (ANTs)37, was performed for all images to correct smooth 
intensity variations in MRI. The pipelines used for image processing in this study were FS version 6.0, LPA, and 
TRACULA.

FS is a pipeline for segmenting the cortical and subcortical brain structures using volumetric T13D images, 
where each voxel is labeled based on a probabilistic  atlas13,14. The T13D MRIs were processed using the cross-
sectional stream over the recon-all script using the Desikan-Killiany atlas and, when available in high quality, 

Table 1.  Image characteristics for each data set. Information about scanner manufacturer, sequence type, 
field strength, dimensionality and directions are reported for each data set. GE general electric, FLAIR fluid 
attenuated inversion recovery, DTI diffusion tensor imaging, * ADNI1, ADNI2 and ADNI3 data were included.

Scanner 
manufacturer

T13D FLAIR DTI

Field strength (T) Voxel size (mm) Field strength (T) Voxel size (mm) # Directions Field strength (T) Voxel size (mm)

ADNI* GE Philips Siemens 1.5
3.0

1.2 × 1.0 × 1.0
1.0 × 1.0 × 1.0 3.0

0.86 × 0.86 × 5.0
1.2 × 1.0 × 1.0
1.0 × 1.0 × 1.0

From 19 to 114 3.0

1.37 × 1.37 × 2.7
1.37 × 1.37 × 2.9
2.0 × 2.0 × 2.0
2.17 × 2.17 × 2.0
0.91 × 0.91 × 2.0
2.67 × 2.67 × 2.0
1.22 × 1.22 × 4.0

FTLDNI GE Siemens 3.0
1.0 × 1.0 × 1.0
1.2 × 1.02 × 1.02
1 × 1.14 × 1.14

3.0
0,86 × 0,86 × 3.0
1 × 0.98 × 0.98
1 × 0.49 × 0.49

From 30 to 64 3.0
2.73 × 2.73 × 2.7
1.37 × 1.37 × 2.7
2.2 × 2.2 × 2.2
1.87 × 1.87 × 6.5

NACC GE Siemens 1.5
3.0

1.0 × 1.0 × 1.0
1 × 0.98 × 0.98
1.2 × 1.02 × 1.02
1.2 × 1.05 × 1.05
0.78 × 1.6 × 0.78
0.98 × 1.5 × 0.98
0.98 × 1 × 0.98
1.0 × 1.0 × 1.2

1.5
3.0

1.0 × 1.0 × 1.0
2.0 × 1.0 × 1.0
0.94 × 0.94 × 3.3
0.97 × 0.97 × 2.0
0.98 × 0.98 × 1.0
0.98 × 0.98 × 3.0
0.86 × 0.86 × 3.0
0.86 × 0.86 × 3.6
0.69 × 0.69 × 4.0
0.43 × 0.43 × 3.0
0.43 × 0.43 × 7.0
1.0 × 0.5 × 0.5

From 15 to 80 1.5
3.0

0.94 × 0.94 × 2.5
0.94 × 0.94 × 2.9
0.94 × 0.94 × 6.0
1.0 × 1.0 × 2.0
1.37 × 1.37 × 6
1.41 × 1.41 × 5
1.87 × 1.87 × 2.5
1.87 × 1.87 × 5.0
2.0 × 2.0 × 2.0
2.5 × 2.5 × 2.5

PDBP Siemens 3.0 0.8 × 0.8 × 0.8
1.0 × 1.0 × 1.0 3.0 1.2 × 1.0 × 1.0 From 48 or 114 3.0 2.0 × 2.0 × 2.0

2.2 × 2.2 × 2.0

Newcastle Philips 1.5
3.0

1.0 × 1.0 × 1.0
1.2 × 0.94 × 0.94
0.94 × 0.94 × 1.5

1.5
3.0

0.94 × 0.94 × 3.0
0.94 × 0.94 × 6.0
1.02 × 1.02 × 2.5

64 1.5
3.0

2.1 × 2.1 × 2.1
2.0 × 2.0 × 2.5
1.87 × 1.87 × 3.0

http://adni.loni.usc.edu
https://naccdata.org/
https://pdbp.ninds.nih.gov/
https://pdbp.ninds.nih.gov/
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FLAIRs were used to improve the segmentation of the pial  surfaces38. Volumes of subcortical regions in native 
space were normalized to FS estimated total intracranial volume (eTIV). Normalization was performed by divid-
ing the volume of the region by the eTIV of the subject and multiplying the ratio by a reference value of 1409  ml39 
to remove the effect of head  size40. Cortical thickness values were not  normalized19.

LPA is an algorithm for the quantification of the WM lesions that is part of the Lesion Segmentation Toolbox 
(LST)41. First, FLAIR images were linearly registered to T13D and each voxel was classified as cerebrospinal fluid 
(CSF), gray matter, or WM using the Statistical Parametric Mapping Tool v12.0 (SPM-12) tissue probability 
maps. Intensity distributions were calculated for each of them and weighted based on the spatial probability of 
belonging to WM. Finally, the map was converted to a binary lesion mask and its volume in native space (nor-
malized to eTIV) was calculated.

TRACULA is a tool for automatic reconstruction of a set of 18 major WM  pathways16. It uses prior informa-
tion about the anatomy and relative positions of the WM tracts in relation to surrounding anatomical structures, 
obtained from a set of cognitively normal training subjects in which the tracts were manually labeled to produce 
tractography  streamlines42. After mitigating image distortions due to eddy currents and B0 field inhomogenei-
ties, TRACULA fits the shape of the tracts to both the subject’s diffusion data and the anatomical neighborhood 
priors derived from the subject’s T1 data. Fractional anisotropy (FA) and mean diffusivity (MD) were extracted 
from the diffusion data in MNI template space for each of the 18 reconstructed pathways. Then, the mean FA 
and mean MD of 48 ROIs were obtained from the WM John Hopkins University (JHU-ICBM-labels-1 mm) 
 atlas43 and applied to the TRACULA maps.

Figure 1.  Acceptable and non-acceptable outputs of each image analysis pipeline. All images and outputs have 
been inspected slice by slice. Images of low quality, presenting artifacts or resulting in wrong segmentation or 
unrealistic reconstruction were discarded.

Figure 2.  Steps to create and test MUQUBIA. (a) Images of 506 subjects were processed to obtain the full 
set of features. (b) Missing values were replaced with median values. (c) The data were split into training set 
(70% of the subjects) and test set (30%) to avoid any bias in the selection of features and in the classification 
performance. (d) Values were standardized. (e) The full set of features was pruned to avoid overfitting using a 
bidirectional sequential feature selection approach. (f) The non-linear SVM model was built and fine-tuned on 
the training and validation sets, while being tested on the test set left aside. Acronyms: ft, features; MD, Mean 
Diffusivity; SVM, Support Vector Machine; WM, White Matter.
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Quality control of the processed outputs was performed by experienced neuroscientists (SD, AR) who 
inspected the images and the results of each pipeline slice by slice, and discarded those with poor quality or 
incorrect segmentation (Fig. 1). The influence of WM-hyperintensity load on FA and MD values in MUQUBIA 
selected tracts was assessed with two multivariate linear regression  models44 (Supplementary Table S3). To inves-
tigate possible bias due to different image acquisition protocols in the datasets, we compared the distributions 
of MRI features of subjects with the same diagnosis from different datasets (inter-cohort variability), and the 
distributions of MRI features of subjects with different diagnoses from the same dataset (intra-cohort variability) 
(Supplementary Fig. S8).

MUQUBIA classification steps
Figure 2 shows the workflow for the creation of the Support Vector Machine (SVM) model.

The imaging biomarkers, CDR scores, and sociodemographic information served as input to the SVM algo-
rithm, which was run in Python 3.7.11. The framework we used was based on the scikit-learn library version 
0.22.245.

The data set was randomly shuffled, with 70% of subjects forming the training set and 30% forming the test 
set. All 5 data sets were included in both the training and test data sets. None of the features resulted in more than 
50% missing data. For the missing values, we employed the median as a method of  imputation46. The statistical 
comparison between the original biomarker values of the training and test sets is presented in Supplementary 
Table S6 to demonstrate homogeneity between the two groups. All values were standardized by removing the 
mean and scaling to the variance of the feature distributions of the subjects from the whole training sample 
(z-scores).

To test the adequacy of the training sample size we modeled the relationship between training sample size and 
accuracy using the post-hoc “learning curve fitting”  method47. The results are shown in Supplementary Fig. S1.

Machine learning models tend to overfit and become less generalizable when dealing with high-dimensional 
features, a well-known phenomenon called the “curse of dimensionality”48. A large set of features generally 
implies the presence of irrelevant, redundant, or correlated variables. To overcome this, our algorithm performed 
feature selection, considering only those features that maximized the accuracy of the classification task in the 
training set evaluated with a five-fold cross validation (CV) approach. This procedure allowed us to determine 
which variables were most informative for the diagnostic categories selected in this study. To determine the best 
set, a forward and backward sequential feature selection approach was followed, with each feature added to the 
model  individually49. If accuracy increased, the feature was considered important; otherwise, it was discarded. 
After the selection process was completed, the surviving features were further reduced to obtain a Variance 
Inflation Factor (VIF) below the threshold value of 5 for each of them (see Table 4), indicating that there was 
no  collinearity50.

To increase computational efficiency, the one-versus-rest (OVR) method was used to transform the multi-class 
problem into multiple binary classifications. The classification results were obtained using a non-linear  SVM51. 
We optimized the search for the best hyperparameters using a five-fold CV splitting strategy over a grid search 
to find the best combination of SVM kernel, C and γ values. We also used L2 regularization.

Finally, SVM performance was evaluated using the following metrics: accuracy, precision, recall, F1 score, 
Area Under the Curve (AUC), Receiver Operating Characteristic curve (ROC). The global metrics, except for 
the accuracy, are macro-averaged, that is the arithmetic mean of the individual class performance.

In the context of ML, interpretability is necessary to explain the outcome of a model. In this study, Shapley 
values were calculated using the library SHAP, version 0.40.025, to better understand the contribution of each 
feature expression.

The clinical challenge for the MUQUBIA algorithm was to distinguish between the different types of dementia. 
Because CDR is a clinical score collected by clinicians during the assessment process to differentiate the healthy 
from the dementia state, we evaluated the performance of our model even without including this scale in the 
feature set (Supplementary Fig. 2) to avoid circularity and minimize potential bias in favor of CN classification.

Statistics
Differences in the variances of the feature distribution of each diagnostic class between the original data set 
and the data set with imputed medians were assessed using the Brown-Forsythe test. Differences in sociodemo-
graphic, clinical, neuropsychological and morphological feature distributions among diagnostic groups, and 
inter- intra-cohort differences were assessed using the Kruskal–Wallis test for continuous variables and the Chi-
squared test for dichotomous variables. Post-hoc analyses were performed to test differences between the four 
diagnostic groups by pairwise comparisons of the Wilcoxon rank sum test for continuous variables and a pairwise 
comparison between pairs of proportions for dichotomous variables. The p-values of the post-hoc analyses were 
adjusted with the Benjamini–Hochberg correction. To compare the neuropathological multilabel evidence with 
the MUQUBIA results, the metric LRAP (Label Ranking Average Precision) was calculated. Similarity between 
test and train ROC curves was assessed using the DeLong’s test. All statistical analyses were performed using R 
version 3.6.3, and the significance level was set at 0.05 for all tests.

Pipeline availability
The single subject classification tool based on the MUQUBIA models was also made publicly available through 
the neuGRID platform (https:// neugr id2. eu)21,52,53, an on-line high-performance computing (HPC) infrastructure 
that provides source code, tools, and data for image processing and ML analysis (see Supplementary Fig. S5).

https://neugrid2.eu
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Results
Subjects
The final data set included 506 subjects: 110 AD, 135 FTD, 153 DLB and 108 CN. Demographic, clinical, neu-
ropsychological, and ApoE information are shown in Table 2. Only neuropsychological tests that followed the 
same protocol in all 5 data sets were considered.

Feature set and sanity check
Image processing yielded a total of 336 features: 202 from FS (including 132 volumes and 70 cortical thickness 
values); 2 from LPA (WM lesion volume and WM lesion number); 36 from TRACULA (18 FA, 18 MD values 
for WM pathways); 96 features from the application of the JHU atlas ROIs to the FA and MD maps. The full list 
of features is reported in Supplementary Table S4.

Table 3 reports the number of outputs deemed acceptable after visual inspection for each pipeline and diag-
nostic group, as well as the consistency of the success rate for each pipeline in the 4 diagnostic groups.

MUQUBIA algorithm
The training sample of MUQUBIA included 354 subjects, while 152 subjects formed the test group. The best 
hyper-parameters among those tested with the GridSearchCV function (i.e. kernel: linear, polynomial, sigmoid, 
radial basis function (RBF); C: 1, 10, 100, 1000, 10,000; γ: 0.1, 0.01, 0.001, 0.0001, 0.00001), were RBF kernel, C 
equal to 1000, and γ equal to 0.0001. For the entire analysis, consisting of image processing and classification of 

Table 2.  Group characteristics. Values are expressed as mean ± standard deviation or percentage (%). P 
values were determined using the Kruskal–Wallis test for continuous variables and the Chi-squared test 
for dichotomous variables (α = 0.05). Values in brackets indicate the number of subjects for whom the 
characteristic is available. (§, post-hoc significant difference between AD and CN; ^, post-hoc significant 
difference between AD and DLB; °, post-hoc significant difference between AD and FTD; *, post-hoc 
significant difference between CN and DLB; £, post-hoc significant difference between CN and FTD; ç, post-
hoc significant difference between DLB and FTD). n sample size, CDR® clinical dementia rating dementia 
staging instrument, NPI-Q neuropsychiatric inventory questionnaire, GDS Geriatric Depression Scale, MMSE 
mini-mental state examination, AD Alzheimer’s dementia, FTD frontotemporal dementia, DLB dementia with 
Lewy bodies, CN cognitively normal controls, ApoE apolipoprotein E, N.A. not available.

AD FTD DLB CN P values

Age (years) 73.6 ± 7.7 (n = 110) 63.9 ± 6.9 (n = 135) 73.9 ± 8.6 (n = 150) 74.3 ± 10.3 (n = 108) < 0.05°£ç

Gender (% of females) 40.9% (n = 110) 40% (n = 135) 18.4% (n = 152) 51.8% (n = 108) < 0.05^*ç

Handedness (% right) 90% (n = 109) N.A 91% (n = 71) 90% (n = 98) 0.92

Disease duration (years) 4.6 ± 2.7 (n = 109) N.A 4.8 ± 3.6 (n = 65) N.A 0.75

Education (years) 15.3 ± 2.7 (n = 104) 16.25 ± 3.2 (n = 112) 13.9 ± 4 (n = 152) 16.4 ± 2.8 (n = 106) < 0.05§^*ç

CDR® 0.9 ± 0.4 (n = 61) 0.8 ± 0.5 (n = 133) 1.1 ± 0.6 (n = 42) 0.04 ± 0.1 (n = 97) < 0.05§*°£ç

NPI-Q 4.2 ± 3.6 (n = 56) 10.1 ± 6.3 (n = 117) 5.8 ± 5.6 (n = 83) 0.7 ± 1.5 (n = 56) < 0.05§*°£ç

GDS 1.9 ± 2.2 (n = 60) 3.5 ± 3.1 (n = 105) 3.8 ± 3.1 (n = 67) 1.1 ± 1.5 (n = 100) < 0.05§^°*£

MMSE 21.9 ± 3.9 (n = 101) 24.9 ± 4.4 (n = 128) 21.5 ± 5.1 (n = 85) 28.9 ± 1.3 (n = 107) < 0.05§°*£ç

Category Fluency—Animals 11 ± 5.2 (n = 74) 9.8 ± 6.4 (n = 124) 9.8 ± 3.9 (n = 66) 20.2 ± 5.3 (n = 89) < 0.05§*£

Digit Forward 6.2 ± 1.3 (n = 25) 5.7 ± 1.4 (n = 123) 5.5 ± 1.0 (n = 26) 6.7 ± 1.1 (n = 26) < 0.05*£

Digit Backward 3.9 ± 1.2 (n = 25) 3.9 ± 1.4 (n = 126) 3.3 ± 0.9 (n = 26) 5 ± 1.3 (n = 27) < 0.05§*£

ApoE4 (% carriers) 65.9% (n = 91) N.A 49.1% (n = 55) 33.0% (n = 97) < 0.05§

Table 3.  Number of correctly processed images and success rate of image processing after visual inspection. 
Numeric values denote the number of outputs that were deemed acceptable after visual inspection for each 
pipeline in each diagnostic group. Percentages indicate the success rate of each pipeline after visual quality 
inspection by two raters. P values were obtained with the Chi-squared test (α = 0.05). FS FreeSurfer version 6.0, 
LPA Lesion Prediction Algorithm, AD Alzheimer’s dementia, FTD frontotemporal dementia, DLB dementia 
with Lewy bodies, CN cognitively normal controls.

FS LPA TRACULA

AD 102 (93%) 81 (74%) 86 (78%)

FTD 132 (98%) 120 (89%) 109 (81%)

DLB 149 (97%) 116 (94%) 81 (77%)

CN 100 (93%) 85 (79%) 95 (88%)

P value 0.07 < 0.05 0.17
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the subjects, the algorithm requires 10 h on a machine running Ubuntu Server 18.04 LTS version on a Sun Grid 
Engine scheduler equipped with 1300 GB RAM and 214 cores. Most of the requested time is spent for image 
analysis.

The algorithm selected 24 features, but two of them were discarded because of a VIF above 5, namely: frac-
tional anisotropy of the left retrolenticular part of the internal capsule and left postcentral thickness. Figure 3 
shows the imaging features selected by the bidirectional selection process implemented in MUQUBIA. The 22 
features composing the best set are listed in Table 4. The features were ranked from highest to lowest importance 
in distinguishing the four diagnostic classes. The set of best features was composed by CDR, 19 MRI features, age 
and gender. The influence of age and gender on the MRI features was assessed and the results are reported in Sup-
plementary Table S5. Across all diagnoses, CDR was the most important feature. The results of the Kruskal–Wal-
lis test showed that the diagnostic groups differed significantly with respect to the selected variables. Post-hoc 
analyses revealed p-values below 0.05 in at least one comparison for all the features.

The Brown-Forsythe test always yielded a p-value greater than 0.05 (Supplementary Table S7), indicating that 
the original variance of the data set was not altered by median imputation.

SHAP analysis
Figure 4 shows the average influence of the features on the prediction of each diagnosis, the values of CDR have 
the greatest influence especially for the classification of CN and AD, whereas the FA of the left corticospinal tract, 
among the others, influences the classification of DLB and AD groups the most.

The global interpretability plot (Fig. 5), shows whether a feature shifts the MUQUBIA prediction toward 
other diagnostic classes and the relative contribution of each feature. The plot consists of all points standardized. 
Focusing on the CN class, low values of CDR have a very high impact on the determination of this diagnosis. 
High values of temporal ROIs (left hippocampal volume and left entorhinal thickness) also have a high influ-
ence, as does a low MD value of right medial lemniscus. Other MRI measures do not provide simple or practical 
information on how they influence MUQUBIA outcome. Atrophy of the left frontal pole, associated with the 
increase of MD in the right medial lemniscus and the decrease of FA in the fronto-occipital fasciculus, influ-
ences the prediction of FTD class in addition to the degeneration of the corticospinal tract. For DLB class, the 
corticospinal tract represented an imaging biomarker of great importance, especially with a reduced value of 
FA, although this tract is not a classic biomarker for DLB. Other imaging biomarkers, such as preservation of 
MD in the retrolenticular part of the internal capsule and preservation of left cortical thickness (entorhinal and 
inferior parietal), have an impact on the classification of DLB patients. For AD, lack or moderate impairment 

Figure 3.  Representation of brain regions corresponding to imaging features selected by MUQUBIA to 
distinguish the different diagnostic classes (AD, DLB, FTD, CN). The color of each brain region reflects the 
ability of the corresponding feature to discriminate among the different classes (averaged mean Shapley value). 
Acronyms: L, left; R, right.
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of FA for the corticospinal tract and high scores for CDR have a major impact on classification, followed by 
damage and shrinkage of some ROIs of the left hemisphere, such as: left superior fronto-occipital fasciculus, 
inferior-parietal thickness, entorhinal thickness. In general, age represents one of the most important factors 
for classification in all dementias.

Additional information can be derived from the partial dependence plot of the main features (Fig. 6). This 
plot shows the marginal effect that two features have on the predicted outcome of MUQUBIA. Once the first 
feature was selected, the second was automatically chosen, picking out the feature with the strongest interaction 
with first one. Most of the plots show complex correlations between the two features and the Shapley values 
(Supplementary Fig. S7), which are discussed in more detail in the “Discussion” section.

Finally, to increase the interpretability and to understand potential problems of MUQUBIA we analyzed some 
correctly and incorrectly predicted subjects in Supplementary Fig. S3 and in Supplementary Fig. S4.

MUQUBIA performance on training set
The classification resulted in the following global metrics: accuracy 91.53%, macro-precision 91.62%, macro-
recall 90.82%, macro-F1 score 90.92%, AUC 98.44%.

MUQUBIA performance on test set
The SVM classification task for the subjects in the test set (Fig. 7) resulted in the following global metrics: accu-
racy 87.50%, macro-precision 88.00%, macro-recall 88.36%, macro-F1 score 87.88%, AUC 97.79%. The DeLong 
test revealed no significant differences (p > 0.05) between the ROC curves of the training and test sets for each 
class. A summary of the performance metrics is provided in Table 5.

Classification metrics obtained with MUQUBIA, trained with the same selected features but without CDR, 
are shown in Supplementary Fig. S2. Performance decreased slightly, especially in the case of CN. However, the 
classification task yielded the following global metrics: accuracy 84%, macro-precision 84%, macro-recall 84%, 
macro-F1 score 83%, AUC 96%.

Table 4.  Best set of features selected by MUQUBIA. Values denote the mean ± standard deviation or 
percentage of variables that best classified subjects into the 4 diagnostic groups, ordered by Shapley values. P 
values were determined using the Kruskal–Wallis test or the Chi squared test (α = 0.05) (§, Post-hoc significant 
analysis difference between AD and CN; ^, Post-hoc significant analysis difference between AD and DLB; 
°, Post-hoc significant analysis difference between AD and FTD; *, Post-hoc significant analysis difference 
between CN and DLB; £, Post-hoc significant analysis difference between CN and FTD; ç, Post-hoc significant 
analysis difference between DLB and FTD). AD Alzheimer’s dementia, CDR® clinical dementia rating dementia 
staging instrument, CN cognitively normal controls, DLB dementia with Lewy bodies, FTD frontotemporal 
dementia, FS FreeSurfer version 6.0, LH left hemisphere, RH right hemisphere, FA fractional anisotropy, MD 
mean diffusivity, VIF variance inflation factor.

Name Pipeline Type AD FTD DLB CN P values VIF factor

CDR® // Clinical 0.94 ± 0.28 0.76 ± 0.55 1.01 ± 0.31 0.04 ± 0.14 < 0.05§°*£ç 1.6

LH corticospinal tract TRACULA FA 0.74 ± 0.12 0.73 ± 0.11 0.56 ± 0.08 0.78 ± 0.16 < 0.05§^*£ç 3.8

LH superior fronto-occipital fasciculus JHU FA 0.38 ± 0.20 0.37 ± 0.20 0.35 ± 0.13 0.60 ± 0.26 < 0.05§*£ 3

RH medial lemniscus  (mm2/s) JHU MD 5 ×  10–4 ± 2 ×  10–4 1 ×  10–3 ± 4 ×  10–4 6 ×  10–4 ± 1 ×  10–4 5 ×  10–4 ± 3 ×  10–4 < 0.05^°*£ç 2.2

LH entorhinal (mm) FS Thickness 2.61 ± 0.55 2.53 ± 0.76 2.92 ± 0.52 3.16 ± 0.38 < 0.05§^*£ç 3.3

LH hippocampus  (mm3) FS Volume 2887 ± 432 2966 ± 591 2973 ± 430 3544 ± 445 < 0.05§*£ 2.5

Age (years) // Demographic 74.07 ± 8.14 64.73 ± 7.11 74.26 ± 8.46 73.98 ± 10.02 < 0.05°£ç 1.5

LH inferior parietal (mm) FS Thickness 2.24 ± 0.33 2.49 ± 0.20 2.42 ± 0.30 2.40 ± 0.30 < 0.05§^° 3.1

LH cortex  (mm3) FS Volume 193,461 ± 23,426 195,671 ± 22,459 190,081 ± 21,871 213,303 ± 22,509 < 0.05§*£ 4.6

LH putamen  (mm3) FS Volume 3795 ± 679 3556 ± 711 3696 ± 502 4061 ± 595 < 0.05§*£ 1.8

LH frontal pole  (mm3) FS Volume 826 ± 193 975 ± 196 917 ± 234 943 ± 187 < 0.05§^°ç 1.4

RH retrolenticular part of internal 
capsule  (mm2/s) JHU MD 9 ×  10–4 ± 3 ×  10–4 9 ×  10–4 ± 3 ×  10–4 8 ×  10–4 ± 2 ×  10–4 7 ×  10–4 ± 3 ×  10–4 < 0.05§^*£ç 1.8

LH pars opercularis (mm) FS Thickness 2.41 ± 0.34 2.47 ± 0.30 2.55 ± 0.32 2.58 ± 0.27 < 0.05§^ 3.7

Pontine crossing tract  (mm2/s) JHU MD 5 ×  10–4 ± 1 ×  10–4 5 ×  10–4 ± 1 ×  10–4 6 ×  10–4 ± 1 ×  10–4 4 ×  10–4 ± 2 ×  10–4 < 0.05§^*£ç 3.2

Gender (% of females) // Demographic 36% 47% 17% 50% < 0.05^*ç 1.4

Splenium of corpus callosum JHU FA 0.57 ± 0.15 0.62 ± 0.12 0.49 ± 0.10 0.69 ± 0.18 < 0.05§^°*£ç 3

LH pallidum  (mm3) FS Volume 1743 ± 290 1675 ± 220 1697 ± 206 1785 ± 242 < 0.05*£ 1.6

RH isthmus cingulate (mm) FS Thickness 2.24 ± 0.29 2.33 ± 0.22 2.28 ± 0.26 2.38 ± 0.27 < 0.05§* 1.6

LH lateral orbitofrontal  (mm3) FS Volume 6873 ± 1323 6367 ± 1346 7471 ± 1210 7355 ± 891 < 0.05§^°£ç 2.4

LH posterior cingulate (mm) FS Thickness 2.38 ± 0.28 2.48 ± 0.20 2.37 ± 0.27 2.49 ± 0.24 < 0.05§°*ç 1.7

RH cerebral peduncle  (mm2/s) JHU MD 6 ×  10–4 ± 2 ×  10–4 7 ×  10–4 ± 2 ×  10–4 8 ×  10–4 ± 2 ×  10–4 6 ×  10–4 ± 3 ×  10–4 < 0.05^°*£ 3.2

LH temporal pole (mm) FS Thickness 3.16 ± 0.52 3.06 ± 0.72 3.31 ± 0.52 3.47 ± 0.43 < 0.05§^£ç 3
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MUQUBIA performance on neuropathological assessed subsample of the test set
Table 6 reports the LRAP value used to compare the agreement between the MUQUBIA probability estimates 
with the National Institute on Aging and Alzheimer’s Association  protocol54 for neuropathological assessment of 
9 patients in our test group. The LRAP metric is classically used in multilabel ranking  problems55. It determines 
the percentage of higher-ranked labels that resemble the true labels for each of the given samples. The score 
obtained is always greater than 0, and the best score is 1.

MUQUBIA report
An example of the MUQUBIA report generated with the on-line tool on the neuGRID platform is available as 
supplementary material (Supplementary Fig. S6).

Discussion
In this work, we developed an automated ML algorithm based on multimodal MRI capable of discriminating 
the most common forms of dementia. The performance of this classifier was validated using quality metrics that 
resulted in high scores for accuracy, macro-precision, macro-recall, macro-F1 and AUC. The classifier was suc-
cessful in discriminating between the 4 groups (AD, FTD, DLB and CN) characterized by different neuropsycho-
logical scores and ApoE expression (Table 2). The algorithm selected CDR, age, gender information, MRI-based 
diffusion metrics, volumetric and cortical thickness values as the best differentiating features.

SVM performance did not differ significantly between the test and training sets using 22 informative fea-
tures; and performances on training set were higher than performance on the test set arguing against severe 
 overfitting56.

In the test set group, MUQUBIA scored highest in discriminating CN from the others, with excellent dis-
crimination performance for each diagnostic class. The lowest performance was in detecting the AD group. This 
could be due to the overlap with other types of dementia, especially  DLB57. Neuropathological brains assessed 
by Montine’s criteria were also correctly classified by MUQUBIA with very good performance (LRAP = 95%).

The MRI features studied were appropriate to selectively distinguish AD, FTD, DLB and to differentiate them 
from cognitively normal aging. The neuroimaging features were extracted from FS and TRACULA pipelines, 
making mandatory only the T13D and DTI to run the MUQUBIA algorithm. Optionally, the FLAIR can be used 
to improve the pial segmentation and to reduce segmentation errors caused by WM hyperintensities. The WM 
hyperintensity information extracted from the LPA does not seem to affect MUQUBIA, as this aspect is likely 
already present in the DTIs as increased MD and decreased FA. It is known that WM hyperintensity may have an 
impact on the DTI metrics, although in the present study and in relation to the features selected by MUQUBIA, 
only the tract of the superior fronto-occipital fasciculus was weakly affected.

In addition to cortical/subcortical gray matter information, which has long been considered informative bio-
markers, WM diffusion metrics have also been shown to be important for ML classification. These metrics appear 
to be useful in distinguishing AD from  FTD17, and, albeit to a lesser extent, in distinguishing AD from  DLB35.

Figure 4.  Contribution of each feature to the classification, represented by the mean Shapley magnitude 
values. The graph shows the importance of each variable for each diagnostic group. Acronyms: AD, Alzheimer’s 
Dementia; FTD, Frontotemporal Dementia; DLB, Dementia with Lewy Body; CN, Cognitive Normal; FA, 
Fractional Anisotropy; MD, Mean Diffusivity; LH, left hemisphere; RH, right hemisphere.
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The implemented data-driven MUQUBIA approach identified the best set of features, many of which were 
consistent with those described in the literature, while others were unexpected. For the benefit of the reader, the 
discussion of the results was organized according to the following 3 main macro-groups:

1. Clinical and socio-demographic features:
Among the most important features in our model there is the CDR, a well-known test for detecting and 

assessing the severity of  dementia58; therefore, it is not surprising that it turned out to be the most informative 
feature. Interestingly, the SHAP partial dependence plot (Fig. 6) shows that the probability of being classified 
as cognitively normal by MUQUBIA is greater when the CDR score is zero and the MD value of the medial 
lemniscus tract is low, indicating no degeneration. Higher values of MD, may instead, progressively reduce the 
weight of the (non-pathological) CDR score in classifying a person as cognitively normal. This could be very 
promising information, especially for secondary prevention, which, by combining multimodal ad hoc biomark-
ers, would allow more accurate, sensitive, and earlier stratification of individuals at the pre-dementia stage than 
using CDR  alone59. As expected, the MUQUBIA model without CDR performed worse in the classification of 
CN, but also in AD, DLB, and FTD confirming the importance of CDR also in the classification of dementia 
groups, as explained by the Shapley values (Fig. 4).

In addition, although neurological diseases are naturally assumed to affect only the elderly, this is not always 
the case. From the Shapley analysis, younger individuals belonging to the CN class are more likely to drop out 
(Fig. 5). The younger age of the FTD group must also be taken into account to explain possible brain imaging 
deviation and possible errors of our model.

Figure 5.  Global interpretability plots for each diagnostic class. Each dot corresponds to a subject in the 
training set. The position of the dot on the x-axis shows the effect of that feature on the prediction of the model 
for that subject. If multiple dots land at the same x position, they piled up to show density. The features are 
ordered by the sum of the Shapley values. Colors are used to display the standardized value of each feature 
(colder colors represent lower values, warmer colors represent higher values). Acronyms: AD, Alzheimer’s 
Dementia; FTD, Frontotemporal Dementia; DLB, Dementia with Lewy Body; CN, Cognitive Normal; LH, left 
hemisphere; RH, right hemisphere; FA, Fractional Anisotropy; MD, Mean Diffusivity.
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Figure 6.  SHAP partial dependence plots for each diagnostic class (AD, DLB, FTD, CN). Each subplot shows 
the marginal effect that two features have on the predicted diagnosis. Once the first feature is chosen, the second 
is selected based on the feature with which the first feature interacts most strongly. The color of a dot indicates 
the value for the second feature. The color of each plot changes progressively from blue to red (or vice-versa) 
as you move along the axes. Colder colors represent lower values, warmer colors represent higher values of the 
second feature. Acronyms: AD, Alzheimer’s Dementia; FTD, Frontotemporal Disease; DLB, Dementia with 
Lewy Body; CN, Cognitive Normal; LH, left hemisphere; RH, right hemisphere; FA, Fractional Anisotropy; MD, 
Mean Diffusivity.

Figure 7.  Confusion matrix and ROC curves of the test set. The AUC of each ROC curve for each diagnostic 
class against all others is reported in the legend. Acronyms: AD, Alzheimer’s Dementia; FTD, Frontotemporal 
Disease; DLB, Dementia with Lewy Body; CN, Cognitive Normal; AUC, Area Under the Curve.
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Interestingly, according to the literature, DLB is associated with male  preponderance60, and this was also 
observed in our DLB group. Finally, MUQUBIA seems to be strongly influenced by the degeneration of the left 
corticospinal tract, which is more pronounced in women than in men, when classifying AD subjects.

2. Cortical and sub-cortical features:
DLB is associated with less global atrophy than AD, whereas posterior cingulate atrophy was similar in AD 

and DLB. AD patients showed more atrophy of the medial temporal lobe structures compared to  DLB61. Hip-
pocampal atrophy was not limited to the AD and DLB groups, but has also been noted in FTD, although to a 
lesser extent than in  AD62. Conversely, FTD patients showed greater atrophy of the temporal pole and orbito-
frontal areas than AD patients, while AD patients showed greater atrophy of the posterior cingulate and inferior 
parietal  regions63. In our study, no significant differences were found between DLB and CN with respect to the 
temporal pole, inferior parietal and orbitofrontal areas.

According to the literature, we found the putamen volume of AD is intermediate between CN and FTD, show-
ing more atrophy in the  latter64. DLB showed volumetric atrophy in the  putamen65, with a moderate influence 
in the MUQUBIA model, or a slight influence in other basal ganglia such as the left  pallidum66. Even in FTD, 
where there is limited and conflicting evidence in the literature regarding the volumetry of deep gray matter 
structures, our results tend to confirm the findings of Möller et al., with respect to the basal ganglia, and show 
that FTD patients are characterized by the most severe atrophy compared with other diagnostic groups as well 
as that atrophy of the pallidum contributes to the classification of FTD patients in MUQUBIA model. Further 
specific efforts will be needed to clarify this point in future studies.

Surprisingly, the volume of the left frontal pole was highest in FTD and differed significantly from all other 
patients examined in this study. This can be partly explained by the younger age of FTD compared with the other 
groups by approximately a decade. Consistent with the literature, patients with AD had smaller volumes of the 
frontal pole, isthmus of cingulate and left pars  opercularis67 compared with CN subjects.

Cortical thickness was a sensitive and comprehensive marker to distinguish AD from other dementias. Cor-
tical shrinkage of the left entorhinal cortex has been reported to be greater in AD than in  DLB68, but similar in 

Table 5.  MUQUBIA quantitative metrics for differential diagnosis in each diagnostic group of the test set. 
Metrics used to determine the goodness of MUQUBIA in discriminating each diagnostic class. AD Alzheimer’s 
dementia, FTD frontotemporal dementia, DLB dementia with Lewy bodies, CN cognitively normal controls, 
PPV positive predictive value, NPV negative predictive value.

Accuracy (%) Precision (PPV) (%) Recall (%) F1 score (%) NPV (%)

AD 90 88 73 80 91

FTD 93 89 89 89 95

DLB 93 82 95 88 98

CN 98 93 96 94 99

Table 6.  MUQUBIA agreement with neuropathologic assessments. The table reports the LRAP score derived 
considering the multilabel neuropathological ground truth (Montine’s criteria) of 9 subjects of our test set 
and the MUQUBIA classification probabilities. All the 9 subjects had cognitive impairment. ’Intermediate’ 
or ’High’ level of ADNC should be considered adequate explanation of AD dementia. ’Limbic’, ’Neocortical’ 
or ’Amygdala-predominant’ level should be considered adequate explanation of Lewy Body Diseases and this 
does not preclude contribution of other diseases (e.g.: ’Amygdala-predominant LBD’ typically occurs in the 
context of advanced AD neuropathologic change). Presence of frontotemporal lobar degeneration with tau 
or other tauopathy and subtypes were labeled as ‘Yes’. LRAP label ranking average precision, ADNC NIA-AA 
Alzheimer’s disease neuropathologic change, ABC Aβ/amyloid plaques (A)—NFT stage (B)—and neuritic 
plaque score (C), FTLD frontotemporal lobar degeneration, AD Alzheimer’s dementia, DLB dementia with 
Lewy body, FTD frontotemporal dementia, CN cognitive normal.

ID

Neuropathology MUQUBIA LRAP

ABC score Lewy body pathology
FTLD with tau or other 
tauopathy AD probability DLB probability FTD probability CN probability

011_S_0183 High ADNC Neocortical (diffuse) No 0.18 0.82 0.00 0.00

95%

027_S_4938 High ADNC Amygdala (predomi-
nant) Yes 0.37 0.05 0.58 0.01

027_S_4962 High ADNC Neocortical (diffuse) Yes 0.46 0.15 0.08 0.32

033_S_0724 High ADNC Neocortical (diffuse) No 0.03 0.97 0.00 0.00

127_S_5058 Intermediate ADNC Neocortical (diffuse) No 0.47 0.26 0.26 0.01

PDDJ916LE2 Intermediate ADNC Limbic (transitional) No 0.61 0.29 0.09 0.02

PDEZ829YJX High ADNC Neocortical (diffuse) No 0.20 0.77 0.01 0.03

NACC047218 High ADNC No No 0.54 0.06 0.29 0.11

NACC131130 High ADNC Amygdala (predomi-
nant) No 0.42 0.56 0.02 0.00
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AD and  FTD69. Left inferior parietal thickness, also greater in FTD, proved to be a robust marker to disentangle 
AD from FTD for  MUQUBIA70.

Moreover, the SHAP partial dependence plot (Fig. 6) showed that MUQUBIA classifies patients as AD when 
a concomitant reduction in left inferior parietal thickness is associated with a reduction in total left cortical 
volume, which has been linked in previous studies to a decrease in semantic  fluency71. Likewise, the SHAP 
partial dependence analysis (Fig. 6) revealed that MUQUBIA tends to classify patients in the DLB class when 
they exhibit lower total left cortical volume and a reduction in left parsopercularis thickness. This observation 
aligns with the existing literature, that links speech fluency impairment to these important regions in  DLB72,73.

3. DTI feature
FA of the left corticospinal tract was lower in AD than in  CN74. Degeneration of the corticospinal tract has 

also been described in  FTD75. Instead, there is no clear evidence in the literature of damage of this tract in the 
DLB  group76, although this tract had a major effect on MUQUBIA. Possible explanations may be found in the 
larger group size used in our study than in other efforts and the quality of the DTI pipeline and scans we used 
to quantify the DTI metrics.

FA of the splenium of the corpus callosum and the superior fronto-occipital fasciculus was lower in AD than 
in  CN72, although the lowest FA values of these pathways occurred in DLB. DLB also showed lower values for 
FA than all other groups in many other pathways and  ROIs77. According to the literature, DLB showed higher 
MD in brainstem  areas78, such as in the pontine crossing tract, compared to CN. Other imaging biomarkers, 
such as the preservation of the retrolenticular part of the internal capsule, influenced MUQUBIA toward DLB 
classification. This is correct given that motor and sensory fibres run through this  ROI79 and must be main-
tained integer to prevent dysphagia and swallowing dysfunction. FTD and AD were the most affected groups 
in the right retrolenticular part of the internal  capsule80. The medial lemniscus MD proved to be the third most 
important feature for classifying FTD patients in MUQUBIA. As previously mentioned, FTD was characterized 
by the degeneration of the corticospinal  tract81 similar to AD. The SHAP partial dependence plot (Fig. 6) for 
the FTD class also revealed that MUQUBIA finds a direct relationship between left corticospinal tract FA and 
right medial lemniscus MD values indicating a specific form of frontal neurodegeneration. Last but not least, 
the correlation between these two tracts could confirm interesting findings on the detection of subtypes of 
frontotemporal lobar  degeneration82.

Benefits from MUQUBIA
Recently, the number of studies using ML has steadily increased because ML enables a fully data-driven and auto-
mated approach. ML is indeed flexible in discovering patterns, complex relationships, and predicting unobserved 
outcomes in data, starting from a sufficient number of  observations83, especially with increasing complexity, 
where classical statistical methods may be rather  ineffective84.

Research studies often address the binary classification between two clinical conditions (i.e.: AD vs. CN; FTD 
vs. CN; FTD vs. AD, etc.…), but this does not reflect the reality of the clinician who needs to make a diagnosis 
considering multiple neurodegenerative diseases at the same time. Although the field of neurodegenerative 
diseases has been extensively  researched85, to our knowledge, few studies have implemented an MRI-based 
ML algorithm for the classification of AD, FTD, DLB and  CN56,86,87, and to date, no study has used DTIs and 
multimodal analyses simultaneously. MUQUBIA is the first ML algorithm for differential diagnosis to use DTI 
together with T13D and FLAIR on a very robust sample size. In fact, Klöppel et al. recruited a small group of FTD 
and DLB, whereas Koikkalainen et al. and Tong et al. included a broader range of dementias (such as vascular 
dementia and subjective memory complaints), but still with fewer subjects per group and with worse performance 
compared with MUQUBIA (i.e.: Klöppel et al.: accuracy of 65%; Koikkolainen et al.: accuracy of 70.6%; Tong 
et al.: accuracy of 75.2%). Moreover, Tong et al. used CSF biomarkers that required an invasive procedure such as 
lumbar puncture which is difficult to obtain in a large population. This could also affect the applicability in daily 
routine and clinical practice in hospitals compared to the data needed as input to MUQUBIA. Many advanced 
research frameworks recommend the analysis of amyloid, tau, or 18F-fluorodeoxyglucose positron emission 
tomography (PET) scans of the brain and CSF to better classify  patients88. However, these expensive procedures 
may limit their actual utility and are not available in the normal clinical setting. MUQUBIA requires routinely 
available MRIs, a clinical test, and a few demographic information, so it can be considered widely applicable 
without incurring excessive costs and burdening patients unnecessarily.

The online MUQUBIA tool does not require manual or “a priori” preprocessing, and the end-user does not 
need to have prior knowledge of the algorithm, although a quality check of the ROI segmentation is always 
advisable.

In addition, experienced neuroradiologists are often not available in routine clinical practice outside of a 
specialized memory clinic, so an automated method capable of extracting and interpreting the information with 
high precision would be of great clinical value.

A strength of this study is that the DTIs followed heterogeneous acquisition protocols, e.g., gradient direc-
tions vary from a minimum of 19 (low) to a maximum of 114 (high). The FLAIR and T13D parameters differed, 
bringing this study closer also to a real-world clinical scenario.

Limitations and future developments
We have considered various types of neurodegenerative diseases, which account for a large proportion of demen-
tia cases, but this approach to differential diagnosis is far from complete. We did not attempt to define subtypes, 
such as posterior cortical atrophy in AD or the language or semantic variant in FTD or psychiatric and delirium 
onset in DLB. This study has limitations related to a partial influence of age and gender on certain MRI features, 
particularly in the FTD or in DLB. In fact, FTD group is the youngest and has an average age of onset of 56 years, 
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while AD and DLB occurs  later9. DLB group instead showed a preponderance of male. These confounders 
could help the classifier to identify more easily these groups and additional experiments should be performed 
to exclude this point. The fact that inter-cohort variability was lower than intra-cohort variability hints that the 
effect of etiology of dementia on MRI features is more important than potential bias induced by heterogeneous 
acquisition protocols, still the classifier might be further improved by trying to minimize the “center-effect” and 
reduce the few differences  observed89.

Future efforts will aim to speed up processing times with new tools, such as FastSurferCNN, that exploit deep 
neural networks and graphical processor units to reduce image preprocessing in minutes.

Finally, due to difficulties finding datasets that contained multimodal and multiclass data, this study lacked 
a complete independent validation data set, but in the future, MUQUBIA should be validated with independent 
data sets given the upcoming Big-Data era.

Conclusion
The fully automated classifier developed in this study can discriminate between AD, FTD, DLB and CN with 
good to excellent performance. Our ML classifier can help clinicians as a second opinion tool to better diagnose 
the different forms of dementia based on routine and cost-effective biomarkers such as age, gender, CDR and 
automatically extracted MRI features. It is important to point out that the interpretability and explainability of 
the methods of ML provide important clues, allow to go beyond the slogan “ML is a black-box”, and lead to the 
discovery of new informative data-driven candidate biomarkers.

Data availability
Publicly available data sets were analyzed in this study: ADNI and FTLDNI are accessible through the Laboratory 
of NeuroImaging (LONI) web portal (http:// adni. loni. usc. edu). NACC and PDBP data are available through the 
following web portals: https:// naccd ata. org/ and https:// pdbp. ninds. nih. gov/. MUQUBIA algorithm is publicly 
accessible through the neuGRID platform (https:// www. neugr id2. eu).
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