563 research outputs found

    Variation of fluxes of RR Tel emission lines measured in 2000 with respect to 1996

    Full text link
    The aim of this work is to make available unpublished non-Fe+ emission line fluxes from optical spectra of the symbiotic nova RR Tel which were taken in 2000, and to compare them with fluxes of the same lines from spectra taken in 1996. After leaving out blends and misidentifications, as well as the unreliable far-red and violet lines, we present the log (F2000/F1996) flux ratios for identified non-Fe+ lines. Mean values of log (F2000/F1996) for different ionization potential ranges of the ions producing the lines are shown separately for the permitted and forbidden lines. All means show fading, which is larger in the lowest range of ionization potential. Provisional interpretations are suggested. We also measured the values of FWHM in 2000; the previously known decrease with time of FWHM of lines due to the same ion has continued.Comment: 16 pages, 5 figure

    The Role of Spatial Coherence and Orbital Angular Momentum of Light in Astronomy

    Get PDF
    The orbital angular momentum (OAM) of light is potentially interesting for astronomical study of rotating objects such as black holes, but the effect of reduced spatial coherence of astronomical light sources such as stars is largely unknown. In a lab-scale experiment, we find that the detected OAM spectrum depends strongly on the position of the light-twisting object along the line of sight. We develop a simple intuitive model to predict the influence of reduced spatial coherence in astronomical observations, and discuss line-of-sight and intensity issues.Comment: updated versio

    Microcavity resonance condition, quality factor, and mode volume are determined by different penetration depths

    Get PDF
    The penetration depth in a Distributed Bragg Reflector (DBR) co-determines the resonance condition, quality factor, and mode volume of DBR-based microcavities. Recent studies have used an incomplete description of the penetration depth and incorrect equations. We present a complete analysis that involves three different penetration depths. We also present a series of experiments on microcavities to accurately determine the frequency and modal penetration depth of our DBRs and compare these results with theoretical predictions. The obtained results are relevant for anyone who models a DBR as an effective hard mirror if lengths of the order of the wavelength are relevant, as is the case for microcavities.Comment: 16 pages, 7 figure

    Observation of Goos-H\"{a}nchen shifts in metallic reflection

    Full text link
    We report the first observation of the Goos-Ha¨\rm \ddot{\textbf{a}}nchen shift of a light beam incident on a metal surface. This phenomenon is particularly interesting because the Goos-Ha¨\rm \ddot{\textbf{a}}nchen shift for pp polarized light in metals is negative and much bigger than the positive shift for ss polarized light. The experimental result for the measured shifts as a function of the angle of incidence is in excellent agreement with theoretical predictions. In an energy-flux interpretation, our measurement shows the existence of a backward energy flow at the bare metal surface when this is excited by a pp polarized beam of light.Comment: The parer was published on Optics Express. The new version is modified according to the reviewers suggestion

    Optimisation of sample thickness for THz-TDS measurements

    Get PDF
    How thick should the sample be for a transmission THz-TDS measurement? Should the sample be as thick as possible? The answer is `no'. Although more thickness allows T-rays to interact more with bulk material, SNR rolls off with thickness due to signal attenuation. Then, should the sample be extremely thin? Again, the answer is `no'. A sample that is too thin renders itself nearly invisible to T-rays, in such a way that the system can hardly sense the difference between the sample and a free space path. So, where is the optimal boundary between `too thick' and `too thin'? The trade-off is analysed and revealed in this paper, where our approach is to find the optimal thickness that results in the minimal variance of measured optical constants.Comment: 13 pages, 11 figure

    Absolute dimensions of solar-type eclipsing binaries. EF Aquarii: a G0 test for stellar evolution models

    Full text link
    Recent studies have shown that stellar chromospheric activity, and its effect on convective energy transport in the envelope, is most likely the cause of significant radius and temperature discrepancies between theoretical evolution models and observations. We aim to determine absolute dimensions and abundances for the solar-type detached eclipsing binary EF Aqr, and to perform a detailed comparison with results from recent stellar evolutionary models. uvby-beta standard photometry was obtained with the Stromgren Automatic Telescope. The broadening function formalism was applied on spectra observed with HERMES at the Mercator telescope in La Palma, to obtain radial velocity curves. Masses and radii with a precision of 0.6% and 1.0% respectively have been established for both components of EF Aqr. The active 0.956 M_sol secondary shows star spots and strong Ca II H and K emission lines. The 1.224 M_sol primary shows signs of activity as well, but at a lower level. An [Fe/H] abundance of 0.00+-0.10 is derived with similar abundances for Si, Ca, Sc, Ti, V, Cr, Co, and Ni. Solar calibrated evolutionary models such as Yonsei-Yale, Victoria-Regina and BaSTI isochrones and evolutionary tracks are unable to reproduce EF Aqr, especially for the secondary, which is 9% larger and 400 K cooler than predicted. Models adopting significantly lower mixing length parameters l/H_p remove these discrepancies, as seen in other solar type binaries. For the observed metallicity, Granada models with a mixing length of l/H_p=1.30 (primary) and 1.05 (secondary) reproduce both components at a common age of 1.5+-0.6 Gyr. Observations of EF Aqr suggests that magnetic activity, and its effect on envelope convection, is likely to be the cause of discrepancies in both radius and temperature, which can be removed by adjusting the mixing length parameter of the models downwards.Comment: 11 pages, 8 figures, accepted for publication by A&

    Herschel PACS and SPIRE observations of blazar PKS 1510-089: a case for two blazar zones

    Full text link
    We present the results of observations of blazar PKS 1510-089 with the Herschel Space Observatory PACS and SPIRE instruments, together with multiwavelength data from Fermi/LAT, Swift, SMARTS and SMA. The source was found in a quiet state, and its far-infrared spectrum is consistent with a power-law with a spectral index of alpha ~ 0.7. Our Herschel observations were preceded by two 'orphan' gamma-ray flares. The near-infrared data reveal the high-energy cut-off in the main synchrotron component, which cannot be associated with the main gamma-ray component in a one-zone leptonic model. This is because in such a model the luminosity ratio of the External-Compton and synchrotron components is tightly related to the frequency ratio of these components, and in this particular case an unrealistically high energy density of the external radiation would be implied. Therefore, we consider a well-constrained two-zone blazar model to interpret the entire dataset. In this framework, the observed infrared emission is associated with the synchrotron component produced in the hot-dust region at the supra-pc scale, while the gamma-ray emission is associated with the External-Compton component produced in the broad-line region at the sub-pc scale. In addition, the optical/UV emission is associated with the accretion disk thermal emission, with the accretion disk corona likely contributing to the X-ray emission.Comment: 13 pages, 8 figures, 7 tables; accepted for publication in the Astrophysical Journa

    Integrating Liberal Education Perspectives in a Transdisciplinary Design Studio

    Get PDF
    Short Abstract: In this presentation, we describe the evolution of our approach to integrating liberal education perspectives within an innovative transdisciplinary learning program. Our experiences are used to illustrate challenges in systematically incorporating liberal education perspectives, including instructional and student barriers to viewing the world from a variety of disciplinary perspectives. Full Abstract: The increasing complexity of design outcomes requires students to develop deep competence in communication and interpersonal skills, including an understanding of how technology is intertwined with societal and human needs. Locating and synthesizing information is crucial to solving interesting and worthwhile problems, but may not be obvious from a solely technical or solely humanities perspective. However, there is relatively little guidance as to how liberal education perspectives might be systematically integrated. In this presentation, we describe the evolution of our approach to integrating liberal education perspectives within an innovative transdisciplinary learning program located at the Purdue Polytechnic Institute. This evolution has included a merger of existing courses, a dual-strand seminar and studio learning experience, and most recently, an integrated studio experience that encapsulates a multiplicity of disciplinary perspectives from liberal education and technology. Our program design experiences are used to illustrate the challenges in systematically incorporating liberal education perspectives in a transdisciplinary learning environment, and the instructional and student barriers to viewing the world through multiple lenses from a variety of disciplinary perspectives
    corecore