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The orbital angular momentum (OAM) of light is potentially interesting for astronomical study
of rotating objects such as black holes, but the effect of reduced spatial coherence of astronomical
light sources like stars is largely unknown. In a lab-scale experiment, we find that the detected
OAM spectrum depends strongly on the position of the light-twisting object along the line of sight.
We develop a simple intuitive model to predict the influence of reduced spatial coherence on the
propagating OAM spectrum for, e.g., astronomical observations. Further, we derive equations to
predict the effect of line-of-sight misalignment and the received intensity in higher-order OAMmodes
for limited-size detectors such as telescopes.

The total angular momentum of paraxial light fields con-
tains a spin (polarization) and an orbital part, where the
latter is related to the azimuthal component of light’s
spatial degree of freedom. For rotationally invariant in-
tensity distributions, there are “pure” orbital angular mo-
mentum (OAM) fields that are characterized simply by a
helical phase ei`φ, where φ is the azimuth in the chosen
coordinate system, and `~ is the OAM of a single photon
in such a mode [1]. In general, we can characterize light
via its OAM spectrum P` [2]. The OAM of light is proven
to be useful in a broad range of classical and quantum
optical applications, and plays a key role in vortex coro-
nagraphy [3, 4] in astronomy, but it is an open question
wether the OAM of light from deep space objects is use-
ful for astronomical observations on earth [5–7]. There is
potential, as for instance, frame-dragging of space in the
vicinity of a rotating (Kerr) black hole can leave a sig-
nificant trace in the OAM spectrum of the light passing
through the region [8–11]. This gives potentially direct
access to the spin of black holes, which is up to now only
accessible via indirect methods such as relativistic line
broadening by the linear Doppler shift and gravitational
effects [12, 13]. We note that there are also OAM phase
modifications of light passing through [14, 15] or being
reflected from [16] rotating objects due to the rotational
Doppler effect; but here, we study situations where the
total OAM is modified and becomes non-zero.

Because the OAM of light is connected to the spatial
degrees of freedom of light, observation thereof requires
light fields with sufficient spatial (transverse) coherence
[17, 18]. This is why light emission from, e.g., the black
hole accretion disk itself cannot be used, instead, we con-
sider the case of a star illuminating the black hole from
behind (Fig. 1a). But also stars emit spatially incoherent
light which acquires spatial coherence only upon propa-
gation; and even if we observe starlight on earth fully co-
herent, it it might be incoherent at the light-twisting ob-
ject. The study of optical phase singularities in partially
coherent fields started with the static case of a twisted
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Gaussian Schell-Model beam [19, 20]. Only relatively
recently, the dynamic case including propagation was in-
vestigated; this led to the discovery of circular correlation
singularities [21–24], further, the precise structure of the
vortices turned out to be quite different to the coher-
ent case [25]. However, the influence of reduced spatial
coherence on the experimentally accessible OAM spec-
trum for a light-twisting object in between is still largely
unknown; mostly light without total OAM was inves-
tigated so far [23, 26]. Because the light-twisting object
modifies azimuthal correlations, theoretical calculation of
the propagation of the cross-spectral density function are
very time consuming [23, 25]; simple models are missing
for, e.g., assessment of the situation in astronomy [5, 10].
We provide here firstly such a model and confirm it by
lab-scale experiments.

To set the stage we show in Fig. 1 our scheme and the
lab-scale experiment emulating the source star, the light-
twisting object, and the detector. We consider here the
case where those objects lie approximately on a straight
line, and spectrally coherent quasi-monochromatic light.
Further, we work within the paraxial approximation and
assume homogeneous polarization, therefore we discuss
only scalar fields. Astronomical light sources are nearly
always spatially completely incoherent, because of spa-
tially uncorrelated light generation processes. To syn-
thesize the spatially incoherent light source (star) in the
lab, we image with a 10× microscope objective a suitable
spot from a large-area LED chip (λ = 620± 10 nm) onto
an aperture of diameter d1. During propagation to the
light-twisting object (at distance L1), a certain degree of
spatial coherence is build up according to the van Cittert–
Zernike theorem. The object then imprints OAM, where
we use in the experiment a spiral phase plate (SPP) of
charge ∆` [27, 28]. Finally, light propagates over distance
L2 to the observer, a OAM-spectrum analyzer. This con-
sists of a phase-only spatial light modulator (SLM) whose
surface is imaged with a 100× microscope objective onto
the core of a single-mode fiber (SMF) connected to a fem-
towatt photo detector. We modulate the LED at around
500 Hz and use lock-in detection. The SLM holograms
are restricted to a circular area to select our detection
aperture d2, which corresponds to the telescope entrance
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Figure 1. (a): The scheme: A spatially incoherent source of
diameter d1 such as a star illuminates a region of space that
modifies the OAM of light, for instance a Kerr black hole. On
earth, a telescope or interferometer with an effective diameter
(baseline) of d2 is used to measure the OAM spectrum. (b):
Lab-scale experimental setup. To simulate the star, we use a
spatially incoherent light source (LED) illuminating the first
aperture; the spiral phase plate (SPP) with charge ∆` mimics
the light-twisting object that modifies the OAM. A combina-
tion of phase-only spatial light modulation (SLM; see inset
for an exemplary hologram) and imaging onto the core of a
single-mode fiber (SMF) coupled to a photo-diode (PD) is
used to measure the OAM spectrum; the aperture d2 on the
SLM corresponds to the telescope diameter.

aperture. For determination of the azimuthal-only OAM
spectrum, we need to integrate over the radial coordi-
nate, for which we sum over the lower 5 “Walsh-type”
radial modes [29], which turns out to be a very reliable
method; the inset in Fig. 1b shows an example hologram
for ` = 2. By displaying a series of vortex holograms on
the SLM, we can measure the OAM spectrum P`. We as-
sume for now perfect line of sight condition, i.e., ∆x ≡ 0.

Fig. 2a and b show the OAM spectra P` for two choices of
the source diameter d1. We recognize the approximately
triangular OAM spectrum, which has been found before
[30], this is due to the hard edges of the source and de-
tector aperture, and mathematically based on the Fourier
relation between a squared spherical Bessel function and
the triangular function. We now introduce a SPP with
∆` = 2 at distance L1 from the first aperture; the result-
ing OAM spectra are shown in Fig. 2c and d. Contrary to
naive expectation, we do not simply observe a spectrum
that is shifted by ∆` = 2, but we observe a deformed
OAM spectrum where the average shift is smaller than
∆` = 2. Further, we see that, the lower the spatial co-
herence of the source (i.e., the larger aperture d1), the
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Figure 2. Measured OAM spectra (red dots, P` versus
`) for different aperture sizes: (a,c) d1 = 1800µm, (b,d)
d1 = 2800µm. (a,b) are measured without the SPP, and
(c,d) with a ∆` = 2 SPP introduced L1 = 560 mm behind
the source aperture d1. The experimental error is estimated
from multiple measurements (10%) and the uncertainty in d1
(±50µm). The bars show the theoretical results (no fit pa-
rameters). Common parameters: d2 = 800µm, L2 = 315 mm.

smaller the average OAM 〈`〉 =
∑
` `P`. Note that if we

use a single-mode source (not shown), we observe a shift
of ∆` = 2, as expected.

How can this be understood? Let us consider briefly two
extreme cases: Clearly, if we place the SPP very close
to the spatially incoherent source (regime A), its action
vanishes: The OAM spectrum of the source is at the
SPP position very broad compared to the small ∆` of the
SPP, but the detector will receive only a narrow spectrum
around ` = 0. Consequently, it detects a nearly unshifted
OAM spectrum. Equally obvious is the opposite extreme
regime (B), if the SPP is placed very close to the detector,
it will then detect a ∆`-shifted OAM spectrum, since the
action of the SPP can be added to the holograms used
for measurement of the OAM spectrum. Useful cases in
astronomy must lie in between those regimes: Regime A
is irrelevant since OAM carries no additional information,
and case B is unrealistic as extremely close black holes
are highly unlikely.

To study the general case, we develop a theory and an in-
tuitive model that explains our experimentally observed
OAM spectrum for arbitrary aperture sizes, positions of
the SPP, and SPP charges ∆`. We could simply calculate
the cross-spectral density functionW at the detector, and
determine from it the OAM spectrum, but this gives little
insight and is very time-consuming. In particular because
we also want to study the case where the observer is not
exactly on the line-of-sight (∆x 6= 0) and no symmetries
can be exploited for simplification [23]. Our approach
here is to model the incoherent source by a number of
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Huygens elementary sources at (x1, y1), each illuminat-
ing the SPP with a spherical wave (which is conceptually
related to the method used in [22]). For the field directly
behind the SPP we obtain (k = 2π/λ):

Es(xs, ys) =
exp [ikRs]

Rs
· exp (i∆`φ) (1)

with R2
s = (xs − x1)2 + (ys − y1)2 + L2

1

We then propagate this field to the detector (E2) numer-
ically, using the well-known Huygens-Fresnel principle:

E2(x, y) =

ˆ
dxsdysEs(xs, ys) exp(i

2π

λ
R)/R (2)

with R2 = (x− xs)2 + (y − ys)2 + L2
2

For each elementary source at (x1, y1), the OAM spec-
trum P`(x1, y1) =

´ d2/2
0

r dr
∣∣´ dφE2(r, φ) exp(i`φ)

∣∣2 is
calculated and summed up incoherently for all sources:
P` =

´
dx1dy1E1(x1, y1)P`(x1, y1). In case ∆x = 0 (ex-

actly in line-of-sight), due to symmetry, we can avoid one
integral and only propagate Huygens sources emerging
from along a radius of the source (e.g., for 0 < x1 < d1/2
with y1 = 0), and add a radial factor in summing up the
OAM spectra as P` =

´ d1/2
0

dx1 x1P`(x1, y1 = 0). The
result of this numerical simulation is compared in Fig. 2
to the experimental data; we see good agreement and
good reproduction of the OAM spectrum deformations.

But for applications of OAM, the precise shape of the
spectrum is often not relevant. Hence, we focus in the
following on the mean OAM 〈`〉, which is directly mea-
surable experimentally [31]. We find here that the mean
OAM is a robust quantity that allows further approxi-
mations of Eq. 2 [32] and also to derive a simple model.

First, we investigate the dependency of the OAM mean
〈`〉 on the diameter of the source d1. In an astrophysical
context this corresponds to the diameter of the source
star, which determines the degree of spatial coherence
at the position of the light-twisting object. In Fig. 3 we
compare d1-dependent experimental data with the theory
(Eq. 2). We see that only for very small source diameter,
the full OAM shift introduced by the SPP is also de-
tectable at the detector. We have measured this for two
spiral phase plates with ∆` = 1, 2 in Fig. 3, the similar
shape of the curves suggests that the charge of the SPP
is simply a scaling parameter, at least for low ∆`, we
therefore normalize in the following the observed mean
OAM by ∆`.

How can we estimate the detected mean OAM in terms
of a simple model? We found that we simply have to
compare the coherence length Lci = 1.22λLi/di of the
source star Lc1 and that of the backpropagated detector
Lc2 at the position of the light-twisting object as follows:

F =
Lc1

Lc1 + Lc2
=

d2L1

d2L1 + d1L2
, (3)
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Figure 3. The detected mean OAM as a function of the
aperture size d1 for ∆` = 1 and ∆` = 2 spiral phase plates
placed L1 = 56 cm behind the first aperture (d2 = 800µm,
L2 = 315 mm). The experimental data (symbols) agree well
to the theory (Eq. 2) and the simple s-curve model.

To confirm this choice, Fig. 4 shows the previous d1-
dependent calculation together with new L1-dependent
calculations. We find that the data points lie on a com-
mon curve. This confirms that all distance (L1, L2), di-
ameter (d1, d2), and SPP charge (∆`) dependencies can
nicely be mapped by F onto a sigmoid-shaped curve.
A s-shaped curve that fits best and has fewest parame-
ters is the incomplete Beta function, we obtain for the
mean OAM 〈`〉 = ∆` · B(F , 3.5, 3.1), see Fig. 4. This
agrees perfectly with the intuitive picture that we have
presented in the beginning, namely that if the SPP is
close to the source (L1 � L2, assuming d1 ≈ d2), its
action disappears because the field at that position is
highly incoherent. On the other hand, very close to the
detector (L1 � L2), the OAM shift ∆` from the SPP is
fully reflected in the detected mean of the OAM spec-
trum 〈`〉, independent of the spatial coherence of the
field there. An estimation of the fidelity parameter Eq. 3
could also be derived from relating the detector diameter
d2 to the coherence singularity diameter dc2 = d1L2/L1

at the position of the detector [22]. This explains why
the expression 3 is not wavelength dependent: for longer
wavelengths, diffraction only reduces the over all inten-
sity and does not modify the ratio between the individual
detected OAM modes.

Now, we discuss the possibility of using light’s OAM
in astronomical observations of massive, space-distorting
objects such as rotating black holes that might twist
light [9, 10]. As an example, we consider the super-
massive Kerr black hole at the center of our galaxy,
Sagittarius A* (Sgr A*) with a Schwarzschild radius of
Rs = 1.27 × 1012 m, where it is reasonable to assume
that all light that we receive is modified [10]. First,
is observation at radio frequencies or with visible light
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Figure 4. Detected normalized mean OAM for d1 and L1 de-
pendent calculation (symbols), plotted as a function of the
parameter F . Both calculations lie on a s-shaped curve that
is nicely represented by the incomplete Beta-function (curve).
Inset: Calculated mean OAM as a function of detector dis-
placement in multiples of ∆x0 =

√
d1d2L2/L1, relative to the

exact line-of-sight condition ∆x = 0.

advantageous? Although the wavelength λ disappeared
from Eq. 3, it affects the overall detected intensity (which
scales as

[
d2

2/ (L2/k)
]|∆`|, see below). In these terms,

most radio telescope arrays are comparable to visible-
light interferometric telescopes, we select as an exam-
ple the next-generation Magdalena Ridge Observatory
Interferometer (MROI) with d2 = 340 m baseline, op-
erating at λ = 600 nm with an angular resolution of
1.8 × 10−9 rad. This telescope would receive from this
area [at L2 = 25.9 × 103 light years (ly) distance] up
to NOAM = 2.3 optical OAM modes [30]. However, as
we have shown, it is highly unlikely that such a large
area will be illuminated spatially coherently. It is more
realistic to assume that a sun-like star or pulsar is il-
luminating Sgr A* from behind, exactly on the line of
sight, we choose d1 = 1.4 × 109 m. From Eq. 3 we
see that, to observe on earth a mean OAM 〈`〉 = ∆`/2
(i.e., 50% shift), we have the extreme requirement that
distance L1 > d1L2/d2 ≈ 1011 ly, which is impossible.
However, more recent studies suggest that a large num-
ber of smaller black holes exist in every galaxy such as
ours; for instance, for a black hole in the Orion nebula
at L2 = 1500 ly distance [33], an illuminating object at
only L1 = 6 · 109 ly would be needed. If we can detect
a 1% OAM shift 〈`〉 = 0.01 ·∆`, an illuminating star at
L1 = 6 · 107 ly would suffice.

Up to now, the source, the light-twisting object, and the
observer were considered to be perfectly on a line. For
large detectors, it is known that misalignment leaves the
mean OAM unchanged, only the variance of the OAM
spectrum increases [34–37]. Here, however, due to the
limited aperture of our detector, we find that the de-

tected mean OAM 〈`〉 is reduced by transverse misalign-
ment ∆x, calculated by modifying P`(x1, y1) below Eq. 2.
For a coherent light source, if the detector is displaced by
more than its diameter, i.e., ∆x� d2, the detected mean
OAM 〈`〉(∆x) vanishes. This would render OAM useless
for astronomy because of typically very large transverse
speeds, e.g., the earth is moving at v = 30 km s−1 around
the sun. However, for partially coherent light, we find a
different scaling parameter ∆x0 =

√
d1d2L2/L1, see the

inset in Fig. 4, where the calculated mean OAM normal-
ized to zero displacement 〈`〉(∆x)/〈`〉(∆x = 0) is shown.
For the case of a rotating black hole in the Orion nebula
(see above, for 1% OAM shift), we obtain ∆x0 = 3450 m,
much larger than the detector size; reduced spatial coher-
ence is actually advantageous here. The observation of
〈`〉-transients due to relative motion opens up a novel
possibility to find, for instance, close-by black holes as
generally, non-zero total OAM is expected to be strictly
absent.

Finally, we briefly discuss a well-known but often ig-
nored fact: During propagation from the light-twisting
object (SPP) to the detector, the vortex core expands
due to diffraction, and if its effective diameter is large
compared to the detector, the detected intensity is much
lower compared to the case without SPP. In the astron-
omy case, the earth-bound observer is certainly always
in this regime and for estimatation of this effect, we find
that the size of the dark core of an OAM mode scales
as (1 + `/2)

√
L2/k (in agreement with the ` = 1 case

in [27]). The integrated intensity captured by a detector
of diameter d2 is [38], relative to the plane-wave case,
Idet(`)/Idet(0) = π

(
d2

2k/4z
)|`|

/ (1 + |`|). For the case of
Sgr A* observed with the MROI, this ratio is approxi-
mately 10−9|`|, suggesting that OAM is only suitable for
observation of much closer light-twisting objects, because
an OAM astronomer sits always in the “shadow of the
phase singularity”. But mind that this is always the case
if we can resolve an image of an object far away.

In conclusion, we have found experimentally and theoret-
ically that insertion of a light-twisting object, such as a
spiral phase plate with charge ∆`, in light with reduced
spatial coherence results in detected OAM spectra which
depend strongly on the position of this object. This con-
trasts with the well-known coherent case, where simply
a displacement of the OAM spectrum by ∆` occurs. We
have derived a simple parameter (Eq. 3) for the mean
of the detected OAM spectrum 〈`〉 as this is key for ap-
plications. For observation of a nonzero OAM shift, it is
required that as few as possible modes from the source il-
luminate the light-twisting object, and as many modes as
possible are detected from it by the observer. With this,
we have assessed the use of OAM in astronomy and find
that with current technology, only close-by light-twisting
objects are within reach; additionally, low light levels and
line-of-sight mismatch must be taken into account seri-
ously. However, the detrimental effects of line-of-sight
misalignment might be smaller for spatially incoherent
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sources, thus first detection of astronomical OAM could
actually be facilitated in this case. It would be interest-
ing to study the influence of gravitational (micro-) lensing
[39], possibly by the black hole itself [40], on light collec-
tion and the line-of-sight criterion; wave-optical studies

of these cases are needed.
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