99 research outputs found
Growth factors for clinical-scale expansion of human articular chondrocytes : Relevance for automated bioreactor systems
The expansion of chondrocytes in automated bioreactors for clinical use requires that a relevant number of cells be generated, starting from variable initial seeding densities in one passage and using autologous serum. We investigated whether the growth factor combination transforming growth factor beta 1/fibroblast growth factor 2/platelet-derived growth factor BB (TFP), recently shown to enhance the proliferation capacity of human articular chondrocytes (HACs), allows the efficiency of chondrocyte use to be increased at different seeding densities and percentages of human serum (HS). HACs were seeded at 1,000, 5,000, and 10,000 celIS/cm(2) in medium containing 10 bovine serum or 10,000 cells/cm(2) with 1 chondrogenic capacity of post-expanded HACs was then assessed in pellet cultures. Expansion with TFP allowed a sufficient number of HACs to be obtained in one passage even at the lowest seeding density and HS percentage and variability in cartilage-forming capacity of HACs expanded under the different conditions to be reduced. Instead, larger variations and insufficient yields were found in the absence of TFP. By allowing large numbers of cells to be obtained, starting from a wide range of initial seeding densities and HS percentages, the use of TFP may represent a viable solution for the efficient expansion of HACs and addresses constraints of automated clinical bioreactor systems
Borna disease virus infects human neural progenitor cells and impairs neurogenesis.
Understanding the complex mechanisms by which infectious agents can disrupt behavior represents a major challenge. The Borna disease virus (BDV), a potential human pathogen, provides a unique model to study such mechanisms. Because BDV induces neurodegeneration in brain areas that are still undergoing maturation at the time of infection, we tested the hypothesis that BDV interferes with neurogenesis. We showed that human neural stem/progenitor cells are highly permissive to BDV, although infection does not alter their survival or undifferentiated phenotype. In contrast, upon the induction of differentiation, BDV is capable of severely impairing neurogenesis by interfering with the survival of newly generated neurons. Such impairment was specific to neurogenesis, since astrogliogenesis was unaltered. In conclusion, we demonstrate a new mechanism by which BDV might impair neural function and brain plasticity in infected individuals. These results may contribute to a better understanding of behavioral disorders associated with BDV infection
Increased susceptibility of transgenic mice expressing human PrP to experimental sheep BSE is not due to increased agent titre in sheep brain tissue
Bovine spongiform encephalopathy (BSE) in cattle and variant Creutzfeldt–Jakob disease in humans have previously been shown to be caused by the same strain of transmissible spongiform encephalopathy agent. It is hypothesized that the agent spread to humans following consumption of food products prepared from infected cattle. Despite evidence supporting zoonotic transmission, mouse models expressing human prion protein (HuTg) have consistently shown poor transmission rates when inoculated with cattle BSE. Higher rates of transmission have however been observed when these mice are exposed to BSE that has been experimentally transmitted through sheep or goats, indicating that humans may potentially be more susceptible to BSE from small ruminants. Here we demonstrate that increased transmissibility of small ruminant BSE to HuTg mice was not due to replication of higher levels of infectivity in sheep brain tissue, and is instead due to other specific changes in the infectious agent
Low seroprevalence of COVID-19 in Lao PDR, late 2020
Background
In 2020 Lao PDR had low reported COVID-19 cases but it was unclear whether this masked silent transmission. A seroprevalence study was done August - September 2020 to determine SARS-CoV-2 exposure.
Methods
Participants were from the general community (n=2433) or healthcare workers (n=666) in five provinces and bat/wildlife contacts (n=74) were from Vientiane province. ELISAs detected anti- SARS-CoV-2 Nucleoprotein (N; n=3173 tested) and Spike (S; n=1417 tested) antibodies. Double-positive samples were checked by IgM/IgG rapid tests. Controls were confirmed COVID-19 cases (n=15) and pre-COVID-19 samples (n=265). Seroprevalence for the general community was weighted to account for complex survey sample design, age and sex.
Findings
In pre-COVID-19 samples, 5·3%, [95% CI=3·1-8·7%] were anti-N antibody single-positive and 1·1% [0·3-3·5%] were anti-S antibody single positive. None were double positive. Anti-N and anti-S antibodies were detected in 5·2% [4·2-6·5%] and 2·1% [1·1-3·9%] of the general community, 2·0% [1·1-3·3%] and 1·4% [0·5-3·7%] of healthcare workers and 20·3% [12·6-31·0%] and 6·8% [2·8-15·3%] of bat/wildlife contacts. 0·1% [0·02-0·3%] were double positive for anti-N and anti-S antibodies (rapid test negative).
Interpretation
We find no evidence for significant SARS-CoV-2 circulation in Lao PDR before September 2020. This likely results from early decisive measures taken by the government, social behavior, and low population density. High anti-N /low anti-S seroprevalence in bat/wildlife contacts may indicate exposure to cross-reactive animal coronaviruses with threat of emerging novel viruses.
Funding
Agence Française de Développement. Additional; Institut Pasteur du Laos, Institute Pasteur, Paris and Luxembourg Ministry of Foreign and European Affairs (“PaReCIDS II”)
Pathogenesis of bovine spongiform encephalopathy in sheep
The pathogenesis of bovine spongiform encephalopathy (BSE) in sheep was studied by immunohistochemical detection of scrapie-associated prion protein (PrPSc) in the gastrointestinal, lymphoid and neural tissues following oral inoculation with BSE brain homogenate. First accumulation of PrPSc was detected after 6 months in the tonsil and the ileal Peyer’s patches. At 9 months postinfection, PrPSc accumulation involved all gut-associated lymphoid tissues and lymph nodes as well as the spleen. At this time point, PrPSc accumulation in the peripheral neural tissues was first seen in the enteric nervous system of the caudal jejunum and ileum and in the coeliac-mesenteric ganglion. In the central nervous system, PrPSc was first detected in the dorsal motor nucleus of the nervus Vagus in the medulla oblongata and in the intermediolateral column in the spinal cord segments T7–L1. At subsequent time points, PrPSc was seen to spread within the lymphoid system to also involve all non-gut-associated lymphoid tissues. In the enteric nervous system, further spread of PrPSc involved the neural plexi along the entire gastrointestinal tract and in the CNS the complete neuraxis. These findings indicate a spread of the BSE agent in sheep from the enteric nervous system through parasympathetic and sympathetic nerves to the medulla oblongata and the spinal cord
Encephalomyocarditis virus may use different pathways to initiateinfection of primary human cardiomyocytes
Encephalomyocarditis virus (EMCV) caninfect a wide range of vertebrate species including swineand non-human primates, but few data are available forhumans. We therefore wanted to gain further insight intothe mechanisms involved in EMCV infection of humancells. For this purpose, we analyzed the permissiveness ofprimary human cardiomyocytes towards two strains ofEMCV; a pig myocardial strain (B279/95) and a rat strain(1086C). In this study, we show that both strains productivelyinfect primary human cardiomyocytes and inducecomplete cytolysis. Binding and infection inhibitionexperiments indicated that attachment and infection areindependent of sialic acid and heparan sulfate for B279/95and dependent for 1086C. Sequence comparison betweenthe two strains and three-dimensional analysis of the capsidrevealed that six of the seven variable residues are surfaceexposed,suggesting a role for these amino acids in binding.Moreover, analysis of variants isolated from the 1086Cstrain revealed the importance of lysine 231 of VP1 in theattachment of EMCV to cell-surface sialic acid residues.Together, these results show a potential for EMCV strainsto use at least two different binding possibilities to initiateinfection and provide new insights into the mechanismsinvolved in primary human cell recognition by EMCV
Possible Case of Maternal Transmission of Feline Spongiform Encephalopathy in a Captive Cheetah
Feline spongiform encephalopathy (FSE) is considered to be related to bovine spongiform encephalopathy (BSE) and has been reported in domestic cats as well as in captive wild cats including cheetahs, first in the United Kingdom (UK) and then in other European countries. In France, several cases were described in cheetahs either imported from UK or born in France. Here we report details of two other FSE cases in captive cheetah including a 2nd case of FSE in a cheetah born in France, most likely due to maternal transmission. Complete prion protein immunohistochemical study on both brains and peripheral organs showed the close likeness between the two cases. In addition, transmission studies to the TgOvPrP4 mouse line were also performed, for comparison with the transmission of cattle BSE. The TgOvPrP4 mouse brains infected with cattle BSE and cheetah FSE revealed similar vacuolar lesion profiles, PrPd brain mapping with occurrence of typical florid plaques. Collectively, these data indicate that they harbor the same strain of agent as the cattle BSE agent. This new observation may have some impact on our knowledge of vertical transmission of BSE agent-linked TSEs such as in housecat FSE, or vCJD
Emergence of Classical BSE Strain Properties during Serial Passages of H-BSE in Wild-Type Mice
BACKGROUND: Two distinct forms of atypical spongiform encephalopathies (H-BSE and L-BSE) have recently been identified in cattle. Transmission studies in several wild-type or transgenic mouse models showed that these forms were associated with two distinct major strains of infectious agents, which also differed from the unique strain that had been isolated from cases of classical BSE during the food-borne epizootic disease. METHODOLOGY/PRINCIPAL FINDINGS: H-BSE was monitored during three serial passages in C57BL/6 mice. On second passage, most of the inoculated mice showed molecular features of the abnormal prion protein (PrP(d)) and brain lesions similar to those observed at first passage, but clearly distinct from those of classical BSE in this mouse model. These features were similarly maintained during a third passage. However, on second passage, some of the mice exhibited distinctly different molecular and lesion characteristics, reminiscent of classical BSE in C57Bl/6 mice. These similarities were confirmed on third passage from such mice, for which the same survival time was also observed as with classical BSE adapted to C57Bl/6 mice. Lymphotropism was rarely detected in mice with H-BSE features. In contrast, PrP(d) was detectable, on third passage, in the spleens of most mice exhibiting classical BSE features, the pattern being indistinguishable from that found in C57Bl/6 mice infected with classical BSE. CONCLUSION/SIGNIFICANCE: Our data demonstrate the emergence of a prion strain with features similar to classical BSE during serial passages of H-BSE in wild-type mice. Such findings might help to explain the origin of the classical BSE epizootic disease, which could have originated from a putatively sporadic form of BSE
A C-Terminal Protease-Resistant Prion Fragment Distinguishes Ovine “CH1641-Like” Scrapie from Bovine Classical and L-Type BSE in Ovine Transgenic Mice
The protease-resistant prion protein (PrPres) of a few natural scrapie isolates identified in sheep, reminiscent of the experimental isolate CH1641 derived from a British natural scrapie case, showed partial molecular similarities to ovine bovine spongiform encephalopathy (BSE). Recent discovery of an atypical form of BSE in cattle, L-type BSE or BASE, suggests that also this form of BSE might have been transmitted to sheep. We studied by Western blot the molecular features of PrPres in four “CH1641-like” natural scrapie isolates after transmission in an ovine transgenic model (TgOvPrP4), to see if “CH1641-like” isolates might be linked to L-type BSE. We found less diglycosylated PrPres than in classical BSE, but similar glycoform proportions and apparent molecular masses of the usual PrPres form (PrPres #1) to L-type BSE. However, the “CH1641-like” isolates differed from both L-type and classical BSE by an abundant, C-terminally cleaved PrPres product (PrPres #2) specifically recognised by a C-terminal antibody (SAF84). Differential immunoprecipitation of PrPres #1 and PrPres #2 resulted in enrichment in PrPres #2, and demonstrated the presence of mono- and diglycosylated PrPres products. PrPres #2 could not be obtained from several experimental scrapie sources (SSBP1, 79A, Chandler, C506M3) in TgOvPrP4 mice, but was identified in the 87V scrapie strain and, in lower and variable proportions, in 5 of 5 natural scrapie isolates with different molecular features to CH1641. PrPres #2 identification provides an additional method for the molecular discrimination of prion strains, and demonstrates differences between “CH1641-like” ovine scrapie and bovine L-type BSE transmitted in an ovine transgenic mouse model
Sheep and Goat BSE Propagate More Efficiently than Cattle BSE in Human PrP Transgenic Mice
A new variant of Creutzfeldt Jacob Disease (vCJD) was identified in humans and linked to the consumption of Bovine Spongiform Encephalopathy (BSE)-infected meat products. Recycling of ruminant tissue in meat and bone meal (MBM) has been proposed as origin of the BSE epidemic. During this epidemic, sheep and goats have been exposed to BSE-contaminated MBM. It is well known that sheep can be experimentally infected with BSE and two field BSE-like cases have been reported in goats. In this work we evaluated the human susceptibility to small ruminants-passaged BSE prions by inoculating two different transgenic mouse lines expressing the methionine (Met) allele of human PrP at codon 129 (tg650 and tg340) with several sheep and goat BSE isolates and compared their transmission characteristics with those of cattle BSE. While the molecular and neuropathological transmission features were undistinguishable and similar to those obtained after transmission of vCJD in both transgenic mouse lines, sheep and goat BSE isolates showed higher transmission efficiency on serial passaging compared to cattle BSE. We found that this higher transmission efficiency was strongly influenced by the ovine PrP sequence, rather than by other host species-specific factors. Although extrapolation of results from prion transmission studies by using transgenic mice has to be done very carefully, especially when human susceptibility to prions is analyzed, our results clearly indicate that Met129 homozygous individuals might be susceptible to a sheep or goat BSE agent at a higher degree than to cattle BSE, and that these agents might transmit with molecular and neuropathological properties indistinguishable from those of vCJD. Our results suggest that the possibility of a small ruminant BSE prion as vCJD causal agent could not be ruled out, and that the risk for humans of a potential goat and/or sheep BSE agent should not be underestimated
- …