1,091 research outputs found

    A novel type of intermittency in a nonlinear dynamo in a compressible flow

    Full text link
    The transition to intermittent mean--field dynamos is studied using numerical simulations of isotropic magnetohydrodynamic turbulence driven by a helical flow. The low-Prandtl number regime is investigated by keeping the kinematic viscosity fixed while the magnetic diffusivity is varied. Just below the critical parameter value for the onset of dynamo action, a transient mean--field with low magnetic energy is observed. After the transition to a sustained dynamo, the system is shown to evolve through different types of intermittency until a large--scale coherent field with small--scale turbulent fluctuations is formed. Prior to this coherent field stage, a new type of intermittency is detected, where the magnetic field randomly alternates between phases of coherent and incoherent large--scale spatial structures. The relevance of these findings to the understanding of the physics of mean--field dynamo and the physical mechanisms behind intermittent behavior observed in stellar magnetic field variability are discussed.Comment: 19 pages, 13 figure

    Observation and Modeling of the Solar-Cycle Variation of the Meridional Flow

    Get PDF
    We present independent observations of the solar-cycle variation of flows near the solar surface and at a depth of about 60 Mm, in the latitude range ±45\pm45^\circ. We show that the time-varying components of the meridional flow at these two depths have opposite sign, while the time-varying components of the zonal flow are in phase. This is in agreement with previous results. We then investigate whether the observations are consistent with a theoretical model of solar-cycle dependent meridional circulation based on a flux-transport dynamo combined with a geostrophic flow caused by increased radiative loss in the active region belt (the only existing quantitative model). We find that the model and the data are in qualitative agreement, although the amplitude of the solar-cycle variation of the meridional flow at 60 Mm is underestimated by the model.Comment: To be published in Solar Physcis Topical Issue "Helioseismology, Asteroseismology, and MHD Connections

    ProMoT : Modular Modeling for Systems Biology

    Get PDF
    Summary: PROMOT is a software designed to support efficient and comprehensible modeling, visualization and analysis of complex and large-scale models. In recent years it has been improved in many aspects. New functionality especially tailored for Systems Biology has been added. It is now a very convenient tool for modular modeling. Availability: PROMOT is an open source project and freely available at http://www.mpi-magdeburg.mpg.de/projects/promot/download.html

    Minnestoa Sheep Research Notes

    Get PDF
    This report provides condensed summaries of research projects conducted by researches at the University of Minnesota

    Acoustic-gravity wave propagation characteristics in 3D radiation hydrodynamic simulations of the solar atmosphere

    Full text link
    There has been tremendous progress in the degree of realism of three-dimensional radiation magneto-hydrodynamic simulations of the solar atmosphere in the past decades. Four of the most frequently used numerical codes are Bifrost, CO5BOLD, MANCHA3D, and MURaM. Here we test and compare the wave propagation characteristics in model runs from these four codes by measuring the dispersion relation of acoustic-gravity waves at various heights. We find considerable differences between the various models. The height dependence of wave power, in particular of high-frequency waves, varies by up to two orders of magnitude between the models, and the phase difference spectra of several models show unexpected features, including ±180\pm180^\circ phase jumps.Comment: 19 pages, 15 figure

    Sizes and fluorescence of cadmium sulfide quantum dots

    Full text link
    Cadmium sulfide quantum dots have been synthesized by wet chemical deposition from an aqueous solution. The sizes of the quantum dots determined by dynamic light scattering directly in the colloidal solution and by intermittent-contact atomic force microscopy in the dry sediment agree with each other. It has been found that splitting of the fluorescence peaks of the quantum dots can be affected by the disorder of the atomic structure of cadmium sulfide quantum dots. © 2013 Pleiades Publishing, Ltd

    Origin of solar torsional oscillations

    Get PDF
    Helioseismology has revealed many details of solar differential rotation and also its time variation, known as torsional oscillations. So far there is no generally accepted theoretical explanation for torsional oscillations, even though a close relation to the solar activity cycle is evident. On the theoretical side non-kinematic dynamo models (including the Lorentz force feedback on differential rotation) have been used to explain torsional oscillations. In this paper we use a slightly different approach by forcing torsional oscillations in a mean field differential rotation model. Our aim is not a fully self-consistent model but rather to point out a few general properties of torsional oscillations and their possible origin that are independent from a particular dynamo model. We find that the poleward propagating high latitude branch of the torsional oscillations can be explained as a response of the coupled differential rotation / meridional flow system to periodic forcing in mid-latitudes, of either mechanical (Lorentz force) or thermal nature. The speed of the poleward propagation sets constraints on the value of the turbulent viscosity in the solar convection zone to be less than 3x10^8 m^2/s. We also show that the equatorward propagating low latitude branch is very unlikely a consequence of mechanical forcing (Lorentz force) alone, but rather of thermal origin due to the Taylor-Proudman theorem.Comment: 11 pages, 7 figures. accepted by Astrophys.

    Flux-transport dynamos with Lorentz force feedback on differential rotation and meridional flow: Saturation mechanism and torsional oscillations

    Full text link
    In this paper we discuss a dynamic flux-transport dynamo model that includes the feedback of the induced magnetic field on differential rotation and meridional flow. We consider two different approaches for the feedback: meanfield Lorentz force and quenching of transport coefficients such as turbulent viscosity and heat conductivity. We find that even strong feedback on the meridional flow does not change the character of the flux-transport dynamo significantly; however it leads to a significant reduction of differential rotation. To a large degree independent from the dynamo parameters, the saturation takes place when the toroidal field at the base of the convection zone reaches between 1.2 an 1.5 T, the energy converted intomagnetic energy corresponds to about 0.1 to 0.2% of the solar luminosity. The torsional oscillations produced through Lorentz force feedback on differential rotation show a dominant poleward propagating branch with the correct phase relation to the magnetic cycle. We show that incorporating enhanced surface cooling of the active region belt (as proposed by Spruit) leads to an equatorward propagating branch in good agreement with observations.Comment: 15 pages, 12 figures, Accepted for publication in ApJ August 10 issue; corrected typos, corrected referenc

    On the Fredholm property of bisingular pseudodifferential operators

    Full text link
    For operators belonging either to a class of global bisingular pseudodifferential operators on Rm×RnR^m \times R^n or to a class of bisingular pseudodifferential operators on a product M×NM \times N of two closed smooth manifolds, we show the equivalence of their ellipticity (defined by the invertibility of certain associated homogeneous principal symbols) and their Fredholm mapping property in associated scales of Sobolev spaces. We also prove the spectral invariance of these operator classes and then extend these results to the even larger classes of Toeplitz type operators.Comment: 21 pages. Expanded sections 3 and 4. Corrected typos. Added reference
    corecore