88 research outputs found

    Quantitative relation between PMSE and ice mass density

    Get PDF
    Radar reflectivities associated with Polar Mesosphere Summer Echoes (PMSE) are compared with measurements of ice mass density in the mesopause region. The 54.5 MHz radar Moveable Atmospheric Radar for Antarctica (MARA), located at the Wasa/Aboa station in Antarctica (73° S, 13° W) provided PMSE measurements in December 2007 and January 2008. Ice mass density was measured by the Solar Occultation for Ice Experiment (SOFIE). The radar operated continuously during this period but only measurements close to local midnight are used for comparison, to coincide with the local time of the measurements of ice mass density. The radar location is at high geographic latitude but low geomagnetic latitude (61°) and the measurements were made during a period of very low solar activity. As a result, background electron densities can be modelled based on solar illumination alone. We find a close correlation between the time and height variations of radar reflectivity and ice mass density, at all PMSE heights, from 80 km up to 95 km. A quantitative expression relating radar reflectivities to ice mass density is found, including an empirical dependence on background electron density. Using this relation, we can use PMSE reflectivities as a proxy for ice mass density, and estimate the daily variation of ice mass density from the daily variation of PMSE reflectivities. According to this proxy, ice mass density is maximum around 05:00–07:00 LT, with lower values around local noon, in the afternoon and in the evening. This is consistent with the small number of previously published measurements and model predictions of the daily variation of noctilucent (mesospheric) clouds and in contrast to the daily variation of PMSE, which has a broad daytime maximum, extending from 05:00 LT to 15:00 LT, and an evening-midnight minimum

    Observations of aerosol by the HALOE Experiment onboard UARS: A preliminary validation

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/94744/1/grl6692.pd

    HALOE Algorithm Improvements for Upper Tropospheric Sounding

    Get PDF
    This report details the ongoing efforts by GATS, Inc., in conjunction with Hampton University and University of Wyoming, in NASA's Mission to Planet Earth UARS Science Investigator Program entitled "HALOE Algorithm Improvements for Upper Tropospheric Soundings." The goal of this effort is to develop and implement major inversion and processing improvements that will extend HALOE measurements further into the troposphere. In particular, O3, H2O, and CH4 retrievals may be extended into the middle troposphere, and NO, HCl and possibly HF into the upper troposphere. Key areas of research being carried out to accomplish this include: pointing/tracking analysis; cloud identification and modeling; simultaneous multichannel retrieval capability; forward model improvements; high vertical-resolution gas filter channel retrievals; a refined temperature retrieval; robust error analyses; long-term trend reliability studies; and data validation. The current (first-year) effort concentrates on the pointer/tracker correction algorithms, cloud filtering and validation, and multi-channel retrieval development. However, these areas are all highly coupled, so progress in one area benefits from and sometimes depends on work in others

    Version 1.3 AIM SOFIE Measured Methane (CH4): Validation and Seasonal Climatology

    Get PDF
    The V1.3 methane (CH4) measured by the Aeronomy of Ice in the Mesosphere (AIM) Solar Occultation for Ice Experiment (SOFIE) instrument is validated in the vertical range of ~25–70 km. The random error for SOFIE CH4 is ~0.1–1% up to ~50 km and degrades to ~9% at ∼ 70 km. The systematic error remains at ~4% throughout the stratosphere and lower mesosphere. Comparisons with CH4 data taken by the SCISAT Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS) and the Envisat Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) show an agreement within ~15% in the altitude range ~30–60 km. Below ~25 km SOFIE CH4 is systematically higher (≥20%), while above ~65 km it is lower by a similar percentage. The sign change from the positive to negative bias occurs between ~55 km and ~60 km (or ~40 km and ~45 km) in the Northern (or Southern) Hemisphere. Methane, H2O, and 2CH4 + H2O yearly differences from their values in 2009 are examined using SOFIE and MIPAS CH4 and the Aura Microwave Limb Sounder (MLS) measured H2O. It is concluded that 2CH4 + H2O is conserved with altitude up to an upper limit between ~35 km and ~50 km depending on the season. In summer this altitude is higher. In the Northern Hemisphere the difference relative to 2009 is the largest in late spring and the established difference prevails throughout summer and fall, suggesting that summer and fall are dynamically quiet. In both hemispheres during winter there are disturbances (with a period of ~1 month) that travel downward throughout the stratosphere with a speed similar to the winter descent. ©2016. American Geophysical Union

    NRLMSIS 2.1: An Empirical Model of Nitric Oxide Incorporated Into MSIS

    Get PDF
    We have developed an empirical model of nitric oxide (NO) number density at altitudes from similar to 73 km to the exobase, as a function of altitude, latitude, day of year, solar zenith angle, solar activity, and geomagnetic activity. The model is part of the NRLMSIS (R) 2.1 empirical model of atmospheric temperature and species densities; this upgrade to NRLMSIS 2.0 consists solely of the addition of NO. MSIS 2.1 assimilates observations from six space-based instruments: UARS/HALOE, SNOE, Envisat/MIPAS, ACE/FTS, Odin/SMR, and AIM/SOFIE. We additionally evaluated the new model against independent extant NO data sets. In this paper, we describe the formulation and fitting of the model, examine biases between the data sets and model and among the data sets, compare with another empirical NO model (NOEM), and discuss scientific aspects of our analysis

    NRLMSIS 2.1: An Empirical Model of Nitric Oxide Incorporated Into MSIS

    Get PDF
    We have developed an empirical model of nitric oxide (NO) number density at altitudes from ∼73 km to the exobase, as a function of altitude, latitude, day of year, solar zenith angle, solar activity, and geomagnetic activity. The model is part of the NRLMSIS® 2.1 empirical model of atmospheric temperature and species densities; this upgrade to NRLMSIS 2.0 consists solely of the addition of NO. MSIS 2.1 assimilates observations from six space-based instruments: UARS/HALOE, SNOE, Envisat/MIPAS, ACE/FTS, Odin/SMR, and AIM/SOFIE. We additionally evaluated the new model against independent extant NO data sets. In this paper, we describe the formulation and fitting of the model, examine biases between the data sets and model and among the data sets, compare with another empirical NO model (NOEM), and discuss scientific aspects of our analysis

    NRLMSIS 2.0: A Whole-Atmosphere Empirical Model of Temperature and Neutral Species Densities

    Get PDF
    NRLMSIS® 2.0 is an empirical atmospheric model that extends from the ground to the exobase and describes the average observed behavior of temperature, eight species densities, and mass density via a parametric analytic formulation. The model inputs are location, day of year, time of day, solar activity, and geomagnetic activity. NRLMSIS 2.0 is a major, reformulated upgrade of the previous version, NRLMSISE-00. The model now couples thermospheric species densities to the entire column, via an effective mass profile that transitions each species from the fully mixed region below ~70 km altitude to the diffusively separated region above ~200 km. Other changes include the extension of atomic oxygen down to 50 km and the use of geopotential height as the internal vertical coordinate. We assimilated extensive new lower and middle atmosphere temperature, O, and H data, along with global average thermospheric mass density derived from satellite orbits, and we validated the model against independent samples of these data. In the mesosphere and below, residual biases and standard deviations are considerably lower than NRLMSISE-00. The new model is warmer in the upper troposphere and cooler in the stratosphere and mesosphere. In the thermosphere, N2 and O densities are lower in NRLMSIS 2.0; otherwise, the NRLMSISE-00 thermosphere is largely retained. Future advances in thermospheric specification will likely require new in situ mass spectrometer measurements, new techniques for species density measurement between 100 and 200 km, and the reconciliation of systematic biases among thermospheric temperature and composition data sets, including biases attributable to long-term changes
    corecore