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Abstract. Radar reflectivities associated with Polar Meso-
sphere Summer Echoes (PMSE) are compared with measure-
ments of ice mass density in the mesopause region. The
54.5 MHz radar Moveable Atmospheric Radar for Antarc-
tica (MARA), located at the Wasa/Aboa station in Antarctica
(73◦ S, 13◦ W) provided PMSE measurements in December
2007 and January 2008. Ice mass density was measured by
the Solar Occultation for Ice Experiment (SOFIE). The radar
operated continuously during this period but only measure-
ments close to local midnight are used for comparison, to
coincide with the local time of the measurements of ice mass
density. The radar location is at high geographic latitude but
low geomagnetic latitude (61◦) and the measurements were
made during a period of very low solar activity. As a result,
background electron densities can be modelled based on so-
lar illumination alone. We find a close correlation between
the time and height variations of radar reflectivity and ice
mass density, at all PMSE heights, from 80 km up to 95 km.
A quantitative expression relating radar reflectivities to ice
mass density is found, including an empirical dependence on
background electron density. Using this relation, we can use
PMSE reflectivities as a proxy for ice mass density, and es-
timate the daily variation of ice mass density from the daily
variation of PMSE reflectivities. According to this proxy,
ice mass density is maximum around 05:00–07:00 LT, with
lower values around local noon, in the afternoon and in the
evening. This is consistent with the small number of previ-
ously published measurements and model predictions of the
daily variation of noctilucent (mesospheric) clouds and in
contrast to the daily variation of PMSE, which has a broad
daytime maximum, extending from 05:00 LT to 15:00 LT,
and an evening-midnight minimum.
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1 Introduction

It has been known for many decades that clouds form at very
high altitudes (80–90 km), in high latitude regions, in sum-
mer. These are visible from the ground as noctilucent clouds
(NLC). Their formation is explained by the extremely low
temperatures at these summer mesopause heights which are a
result of the mesospheric circulation, with upwelling over the
summer polar region. Since the 1980s it has also been clear
that extremely strong radar echoes can be obtained from the
same height region. These are known as Polar Mesosphere
Summer Echoes (PMSE). Intensive research using radars, li-
dars, satellite remote sensing instruments and in-situ probes
carried on sounding rockets has firmly established a relation-
ship between extremely cold temperatures, PMSE and noc-
tilucent clouds. However, the rather large ice-particles which
constitute detectable noctilucent clouds, are found only in the
lower part of the PMSE layer. It has been presumed that the
upper parts of the PMSE layer are associated with ice par-
ticles which are too small to be detected, or with meteoric
smoke. In order for smoke or ice particles to generate strong
radar scatter, the particles must be electrically charged so that
they can cause persistent irregularities in the background gas
of free electrons. A small number of sounding rocket exper-
iments have tried to measure these particles, and some cor-
relations between particles and PMSE have been found, but
the nature of the particles causing PMSE, meteoric smoke or
ice, has not yet been firmly established (for a recent review
see e.g.Rapp and L̈ubken, 2004).

Correlations have been found between noctilucent clouds
observed by lidar and the lower part of near-by PMSE mea-
sured by radar. However, the relationship is not one-to-one –
PMSE are sometimes seen without NLC and vice versa (e.g.
Stebel et al., 2000). There is also a surprising discrepancy
between the local-time variation of noctilucent clouds and
that of PMSE. Nocilucent clouds observed by the ALOMAR
lidar (at 69◦ N, in Norway) are found to be most prevalent
in the post-midnight sector, and least likely to occur in the
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hours around noon (Fiedler et al., 2005). The one satellite
instrument which has been able to estimate the local time
variation of polar mesospheric clouds (PMC) has also found
a minimum between 09:00 and 16:00 LT, with peaks around
06:00 and 18:00 LT (at about 55◦ N) (Stevens et al., 2009).
This is likely due to tidal variations in temperature and trans-
port. PMSE have a distinctly different daily variation from
noctilucent clouds, being strongest around noon and weakest
in the evening, in both hemispheres (e.g.Nilsson et al., 2008;
Smirnova et al., 2010). If PMSE are caused by the same (or
similar, but smaller) ice particles as noctilucent clouds we
might expect a better correlation. Since PMSE are thought
to require ionisation as well as particles, it is possible that
the daily variation of ionisation sources is important. Since
most studies up to now have been made in the Northern-
Hemisphere auroral zone, this aspect has been difficult to
quantify. While the daily variation due to solar radiation is
easy to predict, the contribution from energetic particles in
the auroral zone is highly variable and not easy to measure
since even very small numbers of energetic particles can give
ionisation in excess of that due to solar radiation.

A number of studies using satellite remote sensing to de-
tect clouds at mesopause heights have found evidence of
a long-term increase in occurrence frequency (seeShettle
et al., 2009, and references therein). However, it has been
difficult to correct these observations for possible effects due
to local-time variations – the local time of the satellite ob-
servations has also changed over time. Observations of the
daily variation of noctilucent clouds by lidar cannot be di-
rectly used in this context since they are available at only one
site up to now (ALOMAR) and, in addition, it is possible that
the satellite measurements are not sensitive to the same par-
ticle size range. The measurements reported byStevens et al.
(2009) are for only a limited latitude zone (close to 55◦ N).
If some way can be found to account for the influence of ion-
isation on PMSE, and if PMSE can be shown to be due to
ice particles, it might be possible to correct for ionisation ef-
fects in the local-time variation of PMSE and to use PMSE
to estimate the diurnal variation of ice particles. To see if
this is possible, we compare direct observations of ice par-
ticle characteristics (from a satellite) with measurements of
PMSE from Antarctica, where the large difference in geo-
graphic and geomagnetic latitudes allows PMSE to be moni-
tored with minimal disturbance from auroral precipitation.

2 SOFIE – Solar Occultation for Ice Experiment

The Solar Occultation for Ice Experiment (SOFIE) is a multi-
band radiometer onboard the Aeronomy of Ice in the Meso-
sphere (AIM) satellite. Details of the AIM satellite mission
and the SOFIE instrument can be found inRussell et al.
(2009) andGordley et al.(2009), respectively. SOFIE mea-
sures extinction profiles near the time of local sunrise or sun-
set, to study PMC characteristics during the summer seasons

in both the Northern and Southern Hemispheres. The latitude
of the measurements varies between 66◦ (midsummer) and
76◦ (start and end of the summer season). The field of view
for PMC measurements corresponds to 1.5 km vertically at
the tangent point. SOFIE can in principle measure ice mass
density (Mice), effective radius, axial ratio, and the parame-
ters of a Gaussian size distribution (number concentration,
mean radius and distribution width) (Hervig et al., 2009).
However, due to decreasing signal-to-noise in the short wave-
length measurements, SOFIE often does not obtain reliable
particle size or Gaussian parameters at the highest altitudes
of PMC layers.

For comparison with PMSE, we select SOFIE ice mass
density measurements, since these are available over an ex-
tended height interval. We select SOFIE profiles which are
measured at geographic locations within 15◦ longitude of the
radar site. There are 55 such profiles available for the time
covered by PMSE measurements, 6 December 2007–30 Jan-
uary 2008. The nature of the solar occultation measurements
means that they are all taken at close to the same local solar
time, in this case, between 01:04 and 01:15 LT. In the middle
of the season, the measurements are at latitudes below the
polar circle (65.5◦ S), whereas at the beginning and end of
the period of joint measurements they are at higher latitudes
(66.5◦ and 71.2◦ S, respectively).

There is no a-priori justification for choosing ice mass
density to compare with PMSE, but as we shall see later, it
in practice turns out to provide a good correlation. SOFIE
provides unprecedented sensitivity and measures ice mass-
density directly, throughout the height interval where PMSE
are observed, making this parameter particularly good in this
context. It might also be noted thatRapp et al.(2003) have
argued that the quantityZNicer

2 , whereZ is the average
charge per particle,Nice is the number of ice particles, andr
is the mean particle radius, can be used as a proxy for PMSE.
Z is expected to increase with increasingr, such thatZ ∝ r,
at least for ice particles with at least 10 nm radius (Jensen
and Thomas, 1991). So the proxy becomes∝ Nicer

3 , i.e.
proportional to ice mass density.

3 MARA – Moveable Atmospheric Radar for
Antarctica

MARA, Moveable Atmospheric Radar for Antarctica, is a
small interferometric radar operating at 54.5 MHz. It has
20 kW of (peak) transmitter power and can operate with a
wide variety of pulse lengths and pulse codes. It is a 3 re-
ceiver system, with each receiver connected to a 4×4 array
of tuned dipoles. This allows horizontal winds to be deter-
mined. In the present study, we use coherently combined re-
turns from all 3 receivers, and an 8-bit complementary coded
pulse modulation scheme with 600 m height resolution, to
monitor PMSE. The measurements are calibrated, using the
daily variation of galactic noise as a calibration reference,
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and the instrument-independent parameter volume reflectiv-
ity (η) is calculated from the radar echo power. The radar cy-
cles between modes optimised for PMSE, tropospheric and
boundary layer studies, providing one profile in each mode
every 2 min, each profile representing an average over about
40 s. More details of the MARA radar, operating modes and
calibration can be found inKirkwood et al.(2007).

The longest period of radar operations so far was at
the Swedish/Finnish Antarctic station Wasa/Aboa (73◦ S,
13◦ W) from 4 December 2007 to 31 January 2008. PMSE
observations from MARA during this season have already
been reported inKirkwood et al.(2008), where attention was
drawn to the unusual behaviour of the PMSE height, starting
with the middle of the PMSE layer above 90 km in early De-
cember 2007 and descending to the height near 85 km, which
is usual in the Northern Hemisphere, only after the solstice.
This was found to be related to a similar height shift in the
location of the coldest temperatures.

4 Comparison of PMSE and ice mass density

Figure 1 shows an example of simultaneous, closely co-
located observations from MARA and from SOFIE. SOFIE
measured two profiles of ice mass density within 15◦ lon-
gitude and 2◦ latitude of MARA, about 2 h apart (on con-
secutive orbits). Both profiles (red lines) are very similar.
MARA observations of volume reflectivity are shown from
1 h before to 1 h after the local solar time (at MARA) cor-
responding to the local time of the SOFIE measurements.
The correlative data is selected in terms of local solar time
because of the well-known, strong, local-time variations of
PMSE and noctilucent clouds. The PMSE reflectivities are
scaled by an arbitrary factor so they can be plotted on the
same scale as the SOFIE data. The individual 2-min profiles
(dashed lines) show large variability, with the whole profile
moving between higher and lower levels as time passes. The
mean and median reflectivity profiles (thick blue and black
lines, respectively) are quite different to each other, and the
shape of the ice mass density profiles (red) is somewhere in
between. The wave-like perturbations in the radar reflectivity
are likely due to the influence of a long-period gravity wave.
Radar reflectivity (for radars operating close to 50 MHz) in
the upper troposphere and lower stratosphere is well known
to be primarily controlled by the large-scale vertical gradi-
ent of radio refractive index (e.g.Gage, 1990; Hooper et al.,
2004). It is less well known that a similar sensitivity associ-
ated with large-scale gravity waves, has been documented
and theoretically explained also in the mesosphere, where
the electron density, rather than the neutral density, is re-
sponsible for the refractive index gradient (Muraoka et al.,
1989). Theoretically, the effect could be explained by the
influence of gravity waves on the background gradient of
electron density, by amounts which depend on the details
of the ion-chemistry controlling the electron loss processes.

10
−1

10
0

10
1

10
2

80

85

90

95

 SOFIE  M
ice

 (ng m−3)  :  MARA η (  m−1 × 1016 )
H

E
IG

H
T

 (
 k

m
 )

 

 
 SOFIE 0111 UT 02 ° W

 SOFIE 0248 UT 26 ° W
 MARA median
 MARA mean
 MARA 0134−0322 UT

Fig. 1. Profiles of ice mass density measured by SOFIE and of
PMSE volume reflectivity measured by MARA on 15 January 2008.

Some influence on PMSE can also be expected from vari-
ations in the ice-particle microphysics associated with tem-
perature changes in the wave (e.g.Hoffmann et al., 2008).
However, according to the simulations in the latter paper, the
temperature effect seems too little to explain the observed
amplitude of the wave-related PMSE variations. In any case,
since we would like to find the influence of other parame-
ters on PMSE, we need to find a way to average out such
wave perturbations. It is clear from Fig.1 that reflectivities
vary by several orders of magnitude under the influence of
the wave, so that a median will be a more appropriate esti-
mate of average conditions than an arithmetic mean. It is also
clear that rather long intervals, in excess of 2 h will likely be
needed to average out wave effects. Seasonal averages of the
daily variation of PMSE reflectivity in Antarctica (e.g.Mor-
ris et al., 2006; Nilsson et al., 2008), on the other hand, show
a strong, systematic variation over the day. So we need to
confine time-averaging to an interval close in local time to
the SOFIE observations. This means that some wave effects
will still be present in average (median) profiles from indi-
vidual nights.

Figure 2 shows an overview of all of the available co-
located (within 15◦ longitude) and simultaneous observa-
tions. Panel (a) in Fig.2 shows all of the ice mass den-
sity measurements made by SOFIE within 15◦ longitude of
the radar site during the radar operation period in Antarctic
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Fig. 2. Profiles of ice mass density measured by SOFIE
(panelA) and of PMSE volume reflectivity measured by MARA
(panel B) for the period 6 December 2007–30 January 2008.
Panel(C) shows model values of background electron density and
the panel(D) shows a proxy for ice mass density calculated using
observed PMSE volume reflectivity and model electron densities
(see text for further details).

summer 2007/2008. The ice is clearly less dense, and lo-
cated at higher altitudes, before solstice, descending to lower
heights and increasing in density after solstice. Panel (b) in
Fig. 2 shows median PMSE reflectivities, from 1 h before
to 1 h after the local solar time of the SOFIE measurements
(01:04–01:15 LT) have been used. Note that all samples, in-
cluding those where the PMSE was at the detection threshold
of the radar, are included in determining the median values.
The height shift in the PMSE in the middle of the season,
as previously reported for whole-day averages byKirkwood
et al.(2008) is clearly seen also in these PMSE profiles from
the 00:00–02:00 LT sector..

Overall, the height-time morphologies of ice mass density
and volume reflectivity, are quite similar. Both extend to their
highest altitudes before solstice, and reach their lowest alti-
tudes between 20–30 days after solstice. Double layers are
seen by both around 9 days after solstice. Both instruments
see a longer period of stronger layers 15–30 days after sol-
stice. Some differences can be discerned, however. The ice
mass densities are relatively low 10–15 days before solstice,
while PMSE reflectivities are rather high at that time. PMSE
are relatively weak in the final days of the observations, 30–
38 days after solstice, while ice mass densities remain rela-
tively high. PMSE generally remain strong to slightly higher
altitude than the ice layer.

The basic mechanism causing PMSE is reflection from
irregularities in radar refractive index, with the latter at
mesospheric heights controlled primarily by electron den-
sity. The relationship between PMSE volume reflectivity
(η), electron density (Ne) and ice-particle characteristics is
not well established. Rapp et al.(2008) have suggested
that η ∝ (Neω

2
B/g − δNe/δz−Ne/H)2exp(−γ ), whereωB

is bouyancy frequency,g the acceleration due to gravity,H

the scale height of the neutral atmosphere. In the exponen-
tial factor,γ depends on the turbulent energy dissipation rate,
the radar wavelength and the Schmidt number butRapp et al.
(2008) argue that, for typical PMSE conditions and for radars
operating at about 50 MHz, this exponential term is essen-
tially unity. So we might expectη to depend on the square of
electron density and/or electron density gradient, depending
on the relative magnitudes of the three different terms within
the parentheses.

However, the expression inRapp et al.(2008) is derived
assuming that refractive index irregularities are caused by
active turbulence and uses equations fromHocking (1985)
which are in turn based on the assumption that electron mix-
ing ratio is a conservative tracer of vertical motion associ-
ated with turbulence. This may not necesarily be appropriate
in PMSE conditions where ionisation and charge-exchange
reactions between electrons, ions and ice-particles may be
faster that the turbulent mixing time scales. Alternative anal-
yses consider that electron density fluctuations at the scale
causing PMSE are controlled by structures at the same scale
in the population of charged aerosol (ice or smoke), which
may have been in place for some time. In this case, when
there is a plentiful supply of free electrons (Ne � ZNice),
electron density fluctuations can be simply proportional to
ZNice (Lie-Svendsen et al., 2003). In the same conditions,Z
should be proportional to the particle radius (r) (Jensen and
Thomas, 1991), so we might expectη to depend onrNice.
SOFIE provides estimates ofNice in the lower part of the ice-
layer, where ice-particle sizes can also be estimated. How-
ever, these estimates are not possible in the upper part of the
layer where the ice-particle radius becomes much smaller
(Hervig et al., 2009). So we cannot test for this relation-
ship. On the other hand, for the SOFIE measurements con-
sidered here,Nice reaches at least several times 108 m−3 (in
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the middle of the layer, at about 87 km height). We expect
Ne (see discussion below and panel (c) of Fig.2) to be of the
same order so we cannot assumeNe� ZNice.

When the supply of free elctrons is limited (Ne ≤ ZNice),
the relationship between ice-particle characteristics and radar
reflectivity becomes complex, and no simple formulation is
possible (Havnes, 2004). However, as mentioned in the last
lines of Sect. 3,Rapp et al.(2003) have found empirically
that η ∝ ZNicer

2 . Given that we can expectZ ∝ r, this
is equivalent toη ∝ Nicer

3 , i.e. volume reflectivity is pro-
portional to ice mass density. Since the latter parameter is
measured directly by SOFIE, it is reasonable to test its rela-
tionship to radar reflectivity in the present study.

The season 2007/2008 was geomagnetically quiet and
MARA, despite its high geographic latitude, lies at rather
low geomagnetic latitude (61◦). Although this is well equa-
torward of the average auroral zone, there is still a possi-
bility of energetic particle precipitation in geomagnetically
disturbed conditions (Codrescu et al., 1997). Although our
observation period was relatively quiet (mostly with mag-
netic Ap index 0–12), there were some days of moderate
geomagnetic disturbance (Ap index 15–30). As has been ob-
served at Northern Hemisphere auroral zone sites (Smirnova
et al., 2010; Bremer et al., 2003), we find, in the present ob-
servations, a statistical correlation between PMSE strength
and the geomagnetic Ap index. In the MARA data, how-
ever, a correlation is found only for Ap≥15. We would like
to examine the relationship between PMSE, ice mass den-
sity and electron density so we must restrict our compari-
son to quiet conditions (Ap<15), so that we can reasonably
model the ionisation conditions on the basis of solar short-
wave radiation alone. This can be represented by the qui-
escent electron density,Ne0 (above 80 km in polar summer,
the ionisation rate is proportional toN2

e0). We use the elec-
tron density model described inSmirnova et al.(1988) and
Osepian et al.(2008). Results for the location and times cor-
responding to the PMSE observations are shown in panel (c)
of Fig. 2. Note that the shape of the electron density profiles
at PMSE heights is close to exponential so that the vertical
gradient of electron density is essentially proportional to the
electron density.

On the basis of the considerations outlined above, we try
to find a relation of the formηmed= AM

p

iceN
q

e0 or ηmed=

AM
p

ice(δNe0/δz)
q , whereδ/δz is the vertical gradient,A,p

andq are constants to be determined empirically, andηmed
indicates median values over a sufficiently long time to aver-
age out gravity-wave effects and possible variations in small-
scale processes affecting the fine-structure of the ice-particle
distribution. To test the ability of these models to describe
the relationship between the parameters, we first make av-
erages ofη to match the height resolution of the SOFIE
measurements, using all joint observations when Ap<15,
and all heights between 80 km and 95 km. We then com-
pute predicted values according to the empirical models

ηmodel= AM
p

iceN
q

e0 andη
gradient
model = AM

p

ice(δNe0/δz)
q , iterat-

ing through possible values ofp andq, and testing the corre-
lation between the measuredηmedandηmodel in various ways.
The simplest way is to compute correlation coefficients for
the complete set ofηmed andηmodel values (all heights, all
dates) and to find which values ofp andq lead to the best
correlation. Overall correlation coefficients are at best low,
although significant (rcorr ' 0.25, but with better than 99%
confidence). Correlation coefficients are very similar for a
wide range ofp andq so it is difficult to estimate the confi-
dence limits of the values found for “best-fit”p andq. Tests
with different intervals from the season show dependence on
both Ne0 andMice at the beginning and end of the season,
but only onMice in the middle of the season. Tests choosing
random selections of dates show that the result, the “best-fit”
pair of values forp andq, is very dependent on the selection.
It is also clear when comparing individual pairs of ice/PMSE
profiles that the profile shapes may be very similar but they
are often shifted in height, leading to a low correlation. This
can easily be a result of wave perturbations since the obser-
vations are not at exactly the same location. The best solu-
tion to this problem is to use averages over longer intervals.
Since our measurements do not follow a normal distribution,
and height averaging results in strong correlations between
adjacent heights, we need to use a non-parametric method
(i.e. one which is not dependent on the statistical properties
of the distribution) to get an estimate of confidence limits for
p andq. We use a re-selection method (see e.g.Wilks, 1995),
making a large number of random selections of dates to use.
For each selection, we average the profiles ofMice, Ne0 andη

over the dates included, and find the values ofp andq which
give the best fit to the model. The 2-D histogram of best-fit
p andq pairs forηgradient

model is shown in Fig.3 (the histogram
for ηmodel is essentially the same). Thep,q pair which gives
the best fit for the largest number of random trials, can be
considered the overall most-likely pair. Various confidence
intervals are shown by contours in Fig.3. The 67% confi-
dence contour, for example, encloses the region where 67%
of the best-fit pairs lie. We find that the most likely values of
p andq for both orηgradient

model andηmodel are close to unity, but
values between 0.3 and 2 forq and between 0.5 and 1.5 for
p are within the 67% confidence limits. The results shown
in Fig. 3 are for profiles averaged over 25 days, but the re-
sults are not significantly different if we select half or twice
as many profiles to form the averages. Since we select dates
randomly from the whole season in each trial, these values
apply to the season as a whole.

The confidence limits forp andq are quite large so we
cannot differentiate their “most-likely” values from unity.
There is in practice no significant difference in the results
using eitherηgradient

model or ηmodel. As mentioned above, this is
a consequence of the largely exponential shape of the elec-
tron density gradients in the PMSE height region in our elec-
tron density model. So in illustrating the results obtained
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by our model in the following paragraphs, we consider sim-
ply η

gradient
model and setp = q = 1 (which empirically corre-

sponds toA = 9.0× 10−23 m6 ng−1). (If we were to use
ηmodel the appropriate value forp = q = 1 would beA =

6.2×10−26 m5 ng−1). Figures4 and5 provides illustrations
of the agreement between the observations and the empirical
model. Panel (a) of Fig.4 simply illustrates the relationship
between volume reflectivity and ice-mass density when indi-
vidual days are considered (red crosses) and when averages
over several days are used (black symbols). There is clearly
a large scatter and the correlation is rather low. Panel (b) of
Fig. 4 shows how the correlation is improved by dividing the
volume reflectivities by the electron density term (in this case
the electron density gradient).

Figure5 shows measured PMSE and ice mass profiles, av-
eraged over four different parts of the season (the same inter-
vals as in Fig.4), compared with the PMSE reflectivity pre-
dicted by the model. Here we have plotted the model profiles
for p = q = 1 and the maximum and minimum values, cor-
responding to all sets ofA,p,q within the 67% confidence
limits (equivalent to standard deviation). The agreement be-
tweenη

gradient
model and ηmed profiles is in general rather good,

with the exception of the period in panel C. The influence
of the background electron density profile is clear in the first
two time intervals (A,B), corresponding to the early part of
the season, where the modelled and measured PMSE profiles
have quite different behaviour at the upper heights compared
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individiual days of observations. Black symbols correspond to av-
erages over several days,◦ from 16 days before solstice to solstice,
∗ from 1–15 days after solstice,+ from 16–25 days after solstice,
♦ from 17–38 days after solstice. Only observations during quies-
cent conditions (Ap<15) are included. Note that zeroes (observa-
tions when PMSE or ice density are below the respective detection
thresholds) cannot be plotted on the logarithmic scales used in this
figure, but they are included in average values.

to the ice profile. The correlation coefficient between the
model and measuredη profiles is 0.4 considering all inter-
vals A–D, 0.6 if the profile C is omitted, and 0.8 considering
only profiles A and B. Corresponding correlation coefficients
betweenηmed and Mice are 0.4, 0.5 and 0.6, respectively.
This shows that the inclusion of the term inNe0 significantly
improves the model of ice mass, except when interval C is
included.
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5 Diurnal variation ice mass density derived from
PMSE

We can use the empirical relationship found in the previous
section to construct a proxy for ice mass density based on
PMSE volume reflectivity.

proxyMice= (
η

A(δNe0/δz)q
)1/p (1)

The proxyMice values for the SOFIE conjunctions, predicted
usingp = q = 1, are shown in the lowest panel of Fig.2. The
gaps in the time coverage correspond to times which have
been excluded as Ap≥15. The proxy ice mass density at the
beginning and end of the season is close to the measured val-
ues, and the fall-off at high altitude of the proxy ice layer is
similar to the measurements. However the proxy gives too
high densities 20 days after solstice, when the PMSE was
much stronger than usual. This is likely due to some effect
of the increased geomagnetic disturbance level which was
reflected in the Ap index in the days before and after this
period. Overall, however, the proxy seems to give a reason-
able representation of the ice mass density. The correlation
coefficient between proxyMice and measuredMice, using all
available dates and sampling height profiles at 1.5 km reso-
lution, is rcorr = 0.3 (> 99.9% confidence). This is signif-
icantly better than the correlation coefficient betweenηmed
andMice, which isrcorr = 0.13 but has lower statistical con-
fidence (92%). For time-averaged profiles, corresponding
to the four panels in Fig.5, the correlation coefficients are
higher, 0.6, 0.8 and 0.9, respectively, for all four profiles,
omitting the third profile, and for the first two profiles alone.
In all cases the statistical confidence is> 99.9%.

Clearly, the dependence of our proxy on electron density
is strongly coupled to the different height distributions of
PMSE and ice mass density illustrated in panels (a) and (b)
of Fig.5. This is also the only part of the season when PMSE
and ice in the 00:00–02:00 LT sector are seen at heights
where the electron density exceeds 1000 cm−3. It is con-
ceivable that this height dependence is not due to electron
density gradient (or electron density) but to some other fac-
tor which increases with height. Neutral turbulence is ex-
pected to play a major role in creating the small scale irregu-
larities which cause PMSE. However, in the Northern Hemi-
sphere where comprehensive observations exist, turbulence
occurrence rates seem to maximise at the mesopause height
(about 87 km) and decrease sharply towards higher altitude
(Rapp and L̈ubken, 2004). Other height-dependent factors
such as neutral density or ice particle size should rather lead
to increased electron diffusivity at higher altitude, and less
PMSE. So it seems that increased electron density (gradient)
may indeed be the cause of the increased PMSE (relative to
Mice) at higher altitudes.

If we assume that our proxy applies for all local times, we
can use the local-time variation of PMSE to derive the local-
time variation of ice mass density. The results are shown in
Fig. 6 and Fig.7. In Fig. 6 we have plotted the time varia-
tions, for proxyMice averaged over heights from 84 km to
90 km, and for the total ice-water column (IWC), for our
model with p = q = 1 . We show also the maximum and
minimum values corresponding to all sets ofA,p,q within
the 67% confidence interval (equivalent to standard devia-
tion). The highest values of mean proxyMice and IWC cor-
respond to the least sensitivity of PMSE to electron den-
sity (q ' 0.3) while the lowest values are for the strongest
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proxy ice-mass density from 75 km to 100 km altitude. The corre-
sponding mean ice-water column from SOFIE is shown by the cross
at 01:00 LT (for the measurements in Fig.1 when Ap<15). Proxy
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dependence of PMSE on electron density (q ' 2.0). The re-
sult is a daily variation that peaks in early morning, with a
minimum around noon or in the afternoon. The details of the
daily variation vary considerably within the 67% confidence
limits of the model, with the difference between maximum

0 5 10 15 20
80

85

90

95

H
E

IG
H

T
 (

km
)

 A : MARA PMSE log 
10

 η   ( m−1 )

 

 

−18

−17

−16

−15

0 5 10 15 20
80

85

90

95

 LOCAL TIME ( h ) 
H

E
IG

H
T

 (
km

)

 B : log
10

 proxy M 
ice

  ( ng m−3 )

 

 

−2

−1

0

1

Fig. 7. Panel(A) Daily variation of measured PMSE volume re-
flectivity at MARA (median values) from 6 December 2007 to 31
January 2008. Panel(B) proxy for ice mass density calculated from
the PMSE reflectivity and background electron density.

and minimum varying between a factor 4 and a factor 10. In
Fig. 7 we show the time variations, as a function of height
for the most likely values of our model withp = q = 1.

Considering IWC in more detail, we can see that our “most
likely” proxy slightly underestimates (by about 20%) the
amount at 01:00 LT, as compared to the SOFIE measure-
ments. A likely cause of this discrepancy can be discerned
from the profiles in Fig.5 where it can be seen that the proxy
tends to underestimate the amount of ice at the lowest al-
titudes. On average for the whole comparison period, the
SOFIE measurements show 28% of the IWC from heights
below 84 km, whereas our proxy has only 12% from those
heights (at the same LT). The very low electron densities be-
low 84 km will tend to make PMSE weak so that they are of-
ten below the detection threshold for MARA, and it is likely
that this introduces some bias.

The model withp = q = 1, or those with higher sensitivity
to electron density (i.e. the ones closer to the lower limit in
Fig. 6) result in daily variations which are similar to those
reported for NLC occurrence rate at 69◦ N, 16◦ E, byFiedler
et al.(2005). Both proxyMice and NLC occurrence rate are
highest between 00:00–06:00 LT and lower during the rest
of the day.Fiedler et al.(2005) suggest that this variation is
due to tides, which can affect both transport and temperature.
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Diurnal variation of PMC, for rather lower latitudes, 50–
58◦ N, have also been reported byStevens et al.(2009).
These show highest PMC occurrence rates 00:00–06:00 LT
and lower values 07:00–16:00 LT. The amplitudes of the
daily variation are similar in the reported NLC and PMC
occurrence rates (a factor 3–10) and in our height averaged
proxyMice (about a factor 4). The PMC observations, how-
ever, suggest a large secondary maximum at 17:00–18:00 LT
which is not seen clearly in either the NLC measurements
or in our proxyMice. Stevens et al.(2009) suggest that this
may be primarily a transport effect due to meridional trans-
port of ice from more polar latitudes by semidiurnal tidal
winds. It should be noted, that the NLC observations were
sensitive only to the ice particles at the lowest heights (av-
erage 82–84 km) covered by PMSE, where ice-particle sizes
are largest. The PMC statistics were based on measurements
with a detection threshold of 5 ng m−3 and are also biased
towards the strongest events. Further, our proxyMice is for
a different location – substantially higher latitude and South-
ern Hemisphere rather than northern. The dominant diurnal
tide over Antarctica should modulate PMSE with the same
phase as in the Arctic, but the semidiurnal tide is made up of
several components which are more variable (Murphy et al.,
2006). The amplitude of the diurnal variation in proxyMice
will be sensitive to details of the interplay between tidal tem-
perature and transport variations which are likely to be both
latitude and altitude dependent.

A recent study byStevens et al.(2010) has used assim-
ilation of satellite temperature and water vapour observa-
tions into a global numerical model to determine the daily
variation of conditions at the summer mesopause. This has
been used to drive a microphysical model of PMC forma-
tion for the Northern Hemisphere summer of 2007, using
IWC measured by SOFIE at 23:00 LT as a constraint to ad-
just the parameters of the microphysical modelling. The re-
sulting prediction for the daily variation of PMC, in terms of
IWC, is similar to our results using the PMSE proxy for the
Southern Hemisphere. The model predicts that IWC should
be highest between 05:00 and 10:00 LT and lowest between
16:00 and 23:00 LT, with a factor 5–10 between maximum
and minimum. The absolute values of IWC predicted (cor-
responding to 69◦ N latitude) are substantially higher (max-
imum 200 µg m−2) than in our “most likely” proxy (maxi-
mum 40 µg m−2). However, the IWC measured by SOFIE is
also much lower (25 µg m−2) for the Southern Hemisphere
period considered here than for the Northern-Hemisphere
modelling study (55 µg m−2). This may be an indication of
weaker PMC in the Southern Hemisphere. On the other hand,
the range of values within the limits of our proxy is large, and
peak values as high as 200 µg m−2 cannot be ruled out.

As mentioned in connection to Fig.1, changes in refractive
index gradient associated with waves can affect the PMSE
reflectivities. In creating our proxyMice we have averaged
over 60 days of observations (with about 20% of observa-
tions omitted because of moderate or high geomagnetic dis-

turbance levels). This will effectively average out effects of
waves with random phase from day to day. There are, how-
ever, diurnal and semidiurnal tides which will have similar
phase from day to day. Variations associated with tides will
not be averaged out and may cause features in the local-time
variation of proxyMice which are not due in reality to varia-
tions in ice mass density. More detailed understanding of the
effect of tidal waves on PMSE reflectivity will be needed to
be able to assess the contribution of this factor.

Note that median values of volume reflectivity have been
used both in deriving our model for proxyMice by comparing
with SOFIE measurements close to 01:00 LT, and in apply-
ing that model to find the daily variation. Median volume
reflectivities are substantially lower than mean values, as il-
lustrated by Fig.1. In this case, for averages over the whole
season, during any particular hour of LT, median volume re-
flectivities are lower than means by about a factor 20. Pre-
vious estimates of the daily variation of PMSE reflectivity
at Wasa/Aboa published inNilsson et al.(2008) are mean
values, and are therofore much higher in numerical value.
The diurnal variation in the present data, which represents
2 months of observations during the main PMSE season, is
also slightly different from that found inNilsson et al.(2008),
which represented only 16 days of observations, at the end
of the previous season. In the present data, minimum reflec-
tivities are found around local midnight, rather than around
20:00 LT as found for the end-of season measurements by
Nilsson et al.(2008).

6 Conclusions

We have compared PMSE reflectivity profiles from the
MARA 54.5 MHz radar in Antarctica, with ice mass density
profiles measured by the SOFIE instrument on the AIM satel-
lite, for a two month period in Austral summer 2007/2008.
All available joint measurements are for the interval 00:00–
02:00 LT. We find that PMSE and ice occupy the same
height ranges, with ice detected throughout the height inter-
val where PMSE are observed, from 80 km to 95 km altitude.
This is the first time a satellite instrument has been shown to
measure ice in the upper half of the PMSE layer and strongly
supports the idea that PMSE, at all heights, are caused by the
presence of ice particles.

For quiet geomagnetic conditions (Ap<15), and profiles
averaged over several days, there is a statistically significant
correlation between ice mass density and PMSE volume re-
flectivity (rcorr = 0.4−0.6). For conditions of constant ion-
isation rate, the most likely relation is direct proportionality
which is consistent with the suggestion ofRapp et al.(2003)
that the quantityZNicer

2, can be used as a proxy for PMSE,
provided thatZ ∝ r.

For quiet geomagnetic conditions, we find evidence that
PMSE reflectivities are also influenced by background elec-
tron density or its vertical gradient (background electron
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density is that which would be caused by solar short-wave ra-
diation in the absence of ice particles). Empirically, we find
that ice mass density can be estimated from PMSE reflectiv-
ities, leading to a proxy for ice mass density proxyMice =

(η/AδNe0/δz) or (η/ANe0). The statistical correlation be-
tween proxyMice and measuredMice for profiles averaged
over several days, is significantly better (rcorr = 0.6− 0.9)
than when electron density (gradient) is ignored (rcorr =

0.4−0.6).
We have used proxyMice = (η/AδNe0/δz) to estimate

the diurnal variation of ice mass density from the diurnal
variation of PMSE reflectivity. The result shows that ice
mass density is likely to be highest in mid-morning (05:00–
07:00 LT) and significantly less at mid-day and in the after-
noon. This is in contrast to PMSE which shows consistently
high reflectivities from mid-morning to early-afternoon. The
IWC at the 05:00–07:00 LT maximum in the daily cycle is
higher than the minimum values in the afternoon-evening
sector by a factor 4–10. The daily variation of ice mass densi-
ties in our proxy is consistent with the few available observa-
tions of diurnal variations in NLC and PMC occurrence rates,
and with modelling results for IWC for the Northern Hemi-
sphere (Stevens et al., 2010). In particular, the modelling re-
sults show similar maxima and minima in the mid-morning
and evening sectors, respectively, and a factor 5–10 between
minimum and maximum. The total IWC, however, is higher
by about a factor 2 in the Northern Hemisphere, compared to
the present study, both in the SOFIE observations and in the
modelled IWC.

Radar observations of PMSE are available from many
sites and generally cover all hours of the day. They offer
a potentially powerful tool to monitor variations in ice mass
density, including diurnal, seasonal and intra-seasonal varia-
tions. Further studies will be needed to confirm our results
for other sites and for a wider variety of conditions of back-
ground electron density. For studies of diurnal variation, the
possible effects of tidal modulation on PMSE reflectivities,
independent of effects on ice mass density, will also need to
be assessed.
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