128 research outputs found

    Dynamic studies of antibody-antigen interactions with an electrolyte-gated organic transistor

    Get PDF
    Affinity-based biosensors employing surface-bound biomolecules for analyte detection are important tools in clinical diagnostics and drug development. In this context, electrolyte-gated organic transistors (EGOTs) are emerging as ultrasensitive label-free biosensors. In this study, we present an EGOT sensor integrated within a microfluidic system. The sensor utilizes the cytomegalovirus (CMV) phosphoprotein 65 as a biorecognition element to detect the pathological biomarker human anti-cytomegalovirus antibody in solution. The biorecognition element is grafted onto the gate electrode by exploiting the polyhistidine-tag technology. Real-time monitoring of the EGOT response, coupled with a twocompartment kinetic model analysis, enables the determination of analyte concentration, binding kinetics, and thermodynamics of the interaction. The analysis of the relevant kinetic parameters of the binding process yields a reliable value for the thermodynamic equilibrium constant and suggests that the measured deviations from the Langmuir binding model arise from the co-existence of binding sites with different affinities toward the antibodies

    Angle-Tunable Enhanced Infrared Reflection Absorption Spectroscopy via Grating-Coupled Surface Plasmon Resonance

    Get PDF
    Surface enhanced infrared absorption (SEIRA) spectroscopy is an attractive method for increasing the prominence of vibrational modes in infrared spectroscopy. To date, the majority of reports associated with SEIRA utilize localized surface plasmon resonance from metal nanoparticles to enhance electromagnetic fields in the region of analytes. Limited work has been performed using propagating surface plasmons as a method for SEIRA excitation. In this report, we demonstrate angle-tunable enhancement of vibrational stretching modes associated with a thin poly(methyl methacrylate) (PMMA) film that is coupled to a silver-coated diffraction grating. Gratings are fabricated using laser interference lithography to achieve precise surface periodicities, which can be used to generate surface plasmons that overlap with specific vibrational modes in the polymer film. Infrared reflection absorption spectra are presented for both bare silver and PMMA-coated silver gratings at a range of angles and polarization states. In addition, spectra were obtained with the grating direction oriented perpendicular and parallel to the infrared source in order to isolate plasmon enhancement effects. Optical simulations using the rigorous coupled-wave analysis method were used to identify the origin of the plasmon-induced enhancement. Angle-dependent absorption measurements achieved signal enhancements of more than 10-times the signal in the absence of the plasmon.This article is from Analytical Chemistry86 (2014): 2610-2617, doi:10.1021/ac4038398. Posted with permission.</p

    Экспериментальное изучение влияния глюкозамина гидрохлорида на развитие патоспермии стареющих крыс, вызванной доксорубицином

    Get PDF
    ГЛЮКОЗАМИНА ГИДРОХЛОРИДДОКСОРУБИЦИНПАТОСПЕРМИЯСТАРЕНИЕФАРМАКОЛОГИЯ КЛИНИЧЕСКАЯЛЕКАРСТВ ФИЗИОЛОГИЧЕСКОЕ ДЕЙСТВИЕРЕПРОДУКЦИЮ КОНТРОЛИРУЮЩИЕ СРЕДСТВАЭКСПЕРИМЕНТЫ НА ЖИВОТНЫХКРЫСЫЦель работы - исследование влияния глюкозамина гидрохлорида на развитие гипофункции семенников крыс, вызванной длительным введением доксорубицина на фоне старения животных
    corecore