10,669 research outputs found
Implications of finite one-loop corrections for seesaw neutrino masses
In the standard seesaw model, finite corrections to the neutrino mass matrix
arise from one-loop self-energy diagrams mediated by a heavy neutrino. We
discuss the impact that these corrections may have on the different low-energy
neutrino observables paying special attention to their dependence with the
seesaw model parameters. It is shown that sizable deviations from the
tri-bimaximal mixing pattern can be obtained when these corrections are taken
into account.Comment: 4 pages, 3 figures. Prepared for the proceedings of the 12th
International Conference on Topics in Astroparticle and Underground Physics
(TAUP 2011), Munich, Germany, 5-9 September 201
Leptoquarks: Neutrino masses and accelerator phenomenology
Leptoquark-Higgs interactions induce mixing between leptoquark states with
different chiralities once the electro-weak symmetry is broken. In such LQ
models Majorana neutrino masses are generated at 1-loop order. Here we
calculate the neutrino mass matrix and explore the constraints on the parameter
space enforced by the assumption that LQ-loops explain current neutrino
oscillation data. LQs will be produced at the LHC, if their masses are at or
below the TeV scale. Since the fermionic decays of LQs are governed by the same
Yukawa couplings, which are responsible for the non-trivial neutrino mass
matrix, several decay branching ratios of LQ states can be predicted from
measured neutrino data. Especially interesting is that large lepton flavour
violating rates in muon and tau final states are expected. In addition, the
model predicts that, if kinematically possible, heavier LQs decay into lighter
ones plus either a standard model Higgs boson or a gauge boson.
Thus, experiments at the LHC might be able to exclude the LQ mechanism as
explanation of neutrino data.Comment: 28 pages, 10 figure
Universality Classes of Diagonal Quantum Spin Ladders
We find the classification of diagonal spin ladders depending on a
characteristic integer in terms of ferrimagnetic, gapped and critical
phases. We use the finite algorithm DMRG, non-linear sigma model and
bosonization techniques to prove our results. We find stoichiometric contents
in cuprate planes that allow for the existence of weakly interacting
diagonal ladders.Comment: REVTEX4 file, 3 color figures, 1 tabl
Experimental tests for the Babu-Zee two-loop model of Majorana neutrino masses
The smallness of the observed neutrino masses might have a radiative origin.
Here we revisit a specific two-loop model of neutrino mass, independently
proposed by Babu and Zee. We point out that current constraints from neutrino
data can be used to derive strict lower limits on the branching ratio of
flavour changing charged lepton decays, such as .
Non-observation of Br() at the level of would rule
out singly charged scalar masses smaller than 590 GeV (5.04 TeV) in case of
normal (inverse) neutrino mass hierarchy. Conversely, decay branching ratios of
the non-standard scalars of the model can be fixed by the measured neutrino
angles (and mass scale). Thus, if the scalars of the model are light enough to
be produced at the LHC or ILC, measuring their decay properties would serve as
a direct test of the model as the origin of neutrino masses.Comment: 14 pages, 16 figure
Decaying neutralino dark matter in anomalous models
In supersymmetric models extended with an anomalous different
R-parity violating couplings can yield an unstable neutralino. We show that in
this context astrophysical and cosmological constraints on neutralino decaying
dark matter forbid bilinear R-parity breaking neutralino decays and lead to a
class of purely trilinear R-parity violating scenarios in which the neutralino
is stable on cosmological scales. We have found that among the resulting models
some of them become suitable to explain the observed anomalies in cosmic-ray
electron/positron fluxes.Comment: 19 pages, 3 figures. References added, typos corrected, accepted
version in Phys Rev
Exact renormalization in quantum spin chains
We introduce a real-space exact renormalization group method to find exactly
solvable quantum spin chains and their ground states. This method allows us to
provide a complete list for exact solutions within SU(2) symmetric quantum spin
chains with and nearest-neighbor interactions, as well as examples
with S=5. We obtain two classes of solutions: One of them converges to the
fixed points of renormalization group and the ground states are matrix product
states. Another one does not have renormalization fixed points and the ground
states are partially ferromagnetic states.Comment: 8 pages, 5 figures, references added, published versio
Interacting Bose and Fermi gases in low dimensions and the Riemann hypothesis
We apply the S-matrix based finite temperature formalism to non-relativistic
Bose and Fermi gases in 1+1 and 2+1 dimensions. In the 2+1 dimensional case,
the free energy is given in terms of Roger's dilogarithm in a way analagous to
the relativistic 1+1 dimensional case. The 1d fermionic case with a
quasi-periodic 2-body potential provides a physical framework for understanding
the Riemann hypothesis.Comment: version 3: additional appendix explains how the to
duality of Riemann's follows from a special modular
transformation in a massless relativistic theor
p53 directly regulates the glycosidase FUCA1 to promote chemotherapy-induced cell death
p53 is a central factor in tumor suppression as exemplified by its frequent loss in human cancer. p53 exerts its tumor suppressive effects in multiple ways, but the ability to invoke the eradication of damaged cells by programmed cell death is considered a key factor. The ways in which p53 promotes cell death can involve direct activation or engagement of the cell death machinery, or can be via indirect mechanisms, for example though regulation of ER stress and autophagy. We present here another level of control in p53-mediated tumor suppression by showing that p53 activates the glycosidase, FUCA1, a modulator of N-linked glycosylation. We show that p53 transcriptionally activates FUCA1 and that p53 modulates fucosidase activity via FUCA1 up-regulation. Importantly, we also report that chemotherapeutic drugs induce FUCA1 and fucosidase activity in a p53-dependent manner. In this context, while we found that over-expression of FUCA1 does not induce cell death, RNAi-mediated knockdown of endogenous FUCA1 significantly attenuates p53-dependent, chemotherapy-induced apoptotic death. In summary, these findings add an additional component to p53s tumor suppressive response and highlight another mechanism by which the tumor suppressor controls programmed cell death that could potentially be exploited for cancer therapy
Critical Lines and Massive Phases in Quantum Spin Ladders with Dimerization
We determine the existence of critical lines in dimerized quantum spin
ladders in their phase diagram of coupling constants using the finite-size DMRG
algorithm. We consider both staggered and columnar dimerization patterns, and
antiferromagnetic and ferromagnetic inter-leg couplings. The existence of
critical phases depends on the precise combination of these patterns. The
nature of the massive phases separating the critical lines are characterized
with generalized string order parameters that determine their valence bond
solid (VBS) content.Comment: 9 pages 10 figure
- …