2,027 research outputs found

    Decays Z' -> \gamma\gamma\gamma{} and Z -> \gamma\gamma\gamma{} in the minimal 331 model

    Full text link
    The possibility of a significant effect of exotic particles on the Z'->\gamma\gamma\gamma{} and Z->\gamma\gamma\gamma{} decays is investigated in the context of the minimal 331 model. This model, which is based in the SU_C(3)xSU_L(3)xU_X(1) gauge group, predicts the existence of many exotic charged particles that can significantly enhance the decay widths. It is found that the standard model prediction for the Z->\gamma\gamma\gamma{} decay remains essentially unchanged, as the new physics effects quickly decouples. On the other hand, it is found that the contributions of the new exotic quarks and gauge bosons predicted by this model lead to a branching fraction for the Z'->\gamma\gamma\gamma{} decay of about 10^(-6), which is about three orders of magnitude larger than that of the Z->\gamma\gamma\gamma{} decay.Comment: 20 pages and 20 figure

    Searching for galactic sources in the Swift GRB catalog

    Get PDF
    Since the early 1990s Gamma Ray Bursts have been accepted to be of extra-galactic origin due to the isotropic distribution observed by BATSE and the redshifts observed via absorption line spectroscopy. Nevertheless, upon further examination at least one case turned out to be of galactic origin. This particular event presented a Fast Rise, Exponential Decay (FRED) structure which leads us to believe that other FRED sources might also be Galactic. This study was set out to estimate the most probable degree of contamination by galactic sources that certain samples of FREDs have. In order to quantify the degree of anisotropy the average dipolar and quadripolar moments of each sample of GRBs with respect to the galactic plane were calculated. This was then compared to the probability distribution of simulated samples comprised of a combination of isotropically generated sources and galactic sources. We observe that the dipolar and quadripolar moments of the selected subsamples of FREDs are found more than two standard deviations outside those of random isotropically generated samples.The most probable degree of contamination by galactic sources for the FRED GRBs of the Swift catalog detected until February 2011 that do not have a known redshift is about 21 out of 77 sources which is roughly equal to 27%. Furthermore we observe, that by removing from this sample those bursts that may have any type of indirect redshift indicator and multiple peaks gives the most probable contamination increases up to 34% (17 out of 49 sources). It is probable that a high degree of contamination by galactic sources occurs among the single peak FREDs observed by Swift.Comment: Published to A&A, 4 pages, 5 figures, this arXiv version includes appended table with all the bursts considered in this stud

    Wireless connection of bioimpedance measurement circuits based-on AD5933: A state of the art

    Get PDF
    This contribution describes the state of the art in bioimpedance measurements through development boards to build portable devices that perform in-situ measurements and potential technological opportunities to separate the AD5933 integrated circuit from a PC. The presented research is based on prototypes developed with the aim of achieving portability with the AD5933 integrated circuit and it includes different wireless connection methods and a varied software design for the acquisition, visualization and storage of data obtained from biological systems. As a result, this work describes twenty articles that perform wireless connectivity using different microprocessors for different applications. These references seek to explore technological trends, deficiencies, and opportunities for future development projects in telemedicine.Fil: Dell'osa, Antonio Héctor. Universidad Nacional de Tierra del Fuego. Instituto de Desarrollo Economico E Innovacion; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas; ArgentinaFil: Apátiga Pérez, D. S.. Instituto Politécnico Nacional. Centro de Investigación y de Estudios Avanzados. Departamento de Investigaciones Educativas.; MéxicoFil: Suárez Pérez, K. I.. Instituto Politécnico Nacional. Centro de Investigación y de Estudios Avanzados. Departamento de Investigaciones Educativas.; MéxicoFil: Ramírez Barrios, M.. Instituto Politécnico Nacional. Centro de Investigación y de Estudios Avanzados. Departamento de Investigaciones Educativas.; México4th Latin American Conference on Bioimpedance 2021San Luis PotosíMéxicoSocieda Mexicana de Ingeniería Biomédic

    Perspectives for implementing fisheries certification in developing countries

    Get PDF
    This paper discusses the future of the Marine Stewardship Council (MSC), a market-based certification program, in developing countries and exposes the challenges and opportunities for fish producers. The MSC needs to attract the interest of more fishing enterprises from these regions to increase its global presence. Because most fisheries in developing countries cannot meet the MSC standards, or afford the certification process costs, it is suggested that there is a need for developing different levels within the MSC system and additional third-party assessing organizations. MSC certification may mean adoption of improvements in fisheries management and approving fishing regimes in developing countries. However, post-certification benefits may decrease as more fisheries become certified

    In situ surface coverage analysis of RuO<sub>2</sub>-catalysed HCl oxidation reveals the entropic origin of compensation in heterogeneous catalysis

    Get PDF
    In heterogeneous catalysis, rates with Arrhenius-like temperature dependence are ubiquitous. Compensation phenomena, which arise from the linear correlation between the apparent activation energy and the logarithm of the apparent pre-exponential factor, are also common. Here, we study the origin of compensation and find a similar dependence on the rate-limiting surface coverage term for each Arrhenius parameter. This result is derived from an experimental determination of the surface coverage of oxygen and chlorine species using temporal analysis of products and prompt gamma activation analysis during HCl oxidation to Cl2 on a RuO2 catalyst. It is also substantiated by theory. We find that compensation phenomena appear when the effect on the apparent activation energy caused by changes in surface coverage is balanced out by the entropic configuration contributions of the surface. This result sets a new paradigm in understanding the interplay of compensation effects with the kinetics of heterogeneously catalysed processes

    XMM-Newton observations of the hot spot galaxy NGC 2903

    Full text link
    We report on the first deeper X-ray broad-band observation of the hot spot galaxy NGC 2903 obtained with XMM-Newton. X-ray imaging and spectra of the spiral barred galaxy were obtained from XMM-Newton archival data to study its X-ray population and the conditions of the hot gas in its central region. We investigate the spectral properties of the discrete point-source population and give estimates of their X-ray spectral parameters. By analysing the RGS spectra, we derive temperature and abundances for the hot gas located in its central region. A total of six X-ray point sources (four of them ULX candidates) were detected in the energy range of 0.3-10.0 keV located within the galaxy D25 optical disk. Three of these sources are detected for the first time, and one of them with a luminosity of higher than 10^39 erg/s. After fitting three different models, we were able to estimate their luminosities, which are compatible with those of binaries with a compact object in the form of black holes (BHs) rather than neutron stars (NSs). We extracted the combined first-order RGS1 and RGS2 spectra of its central region, which display several emission lines. Both O\,{\sc vii} ff and rr lines seem to be of similar strength, which is consistent with the presence of the collisionally ionized gas that is typical of starburst galaxies. We fitted the spectrum to a model for a plasma in collisional ionization equilibrium (CIE) and the continuum was modelled with a power law, resulting in a plasma temperature of T = 0.31 \pm 0.01 keV and an emission measure EM \equiv n_Hn_eV =6.4_{-0.4}^{+0.5}\times 10^{61} cm~cm^{-3}. We also estimated abundances that are consistent with solar values.Comment: 5 pages, 2 figures, accepted for publication in A&A, resubmission corrects typographical errors and improves exposition according to the referee's suggestion

    Effects of systematic and random errors on the retrieval of particle microphysical properties from multiwavelength lidar measurements using inversion with regularization

    Get PDF
    In this work we study the effects of systematic and random errors on the inversion of multiwavelength (MW) lidar data using the well-known regularization technique to obtain vertically resolved aerosol microphysical properties. The software implementation used here was developed at the Physics Instrumentation Center (PIC) in Troitsk (Russia) in conjunction with the NASA/Goddard Space Flight Center. Its applicability to Raman lidar systems based on backscattering measurements at three wavelengths (355, 532 and 1064 nm) and extinction measurements at two wavelengths (355 and 532 nm) has been demonstrated widely. The systematic error sensitivity is quantified by first determining the retrieved parameters for a given set of optical input data consistent with three different sets of aerosol physical parameters. Then each optical input is perturbed by varying amounts and the inversion is repeated. Using bimodal aerosol size distributions, we find a generally linear dependence of the retrieved errors in the microphysical properties on the induced systematic errors in the optical data. For the retrievals of effective radius, number/surface/volume concentrations and fine-mode radius and volume, we find that these results are not significantly affected by the range of the constraints used in inversions. But significant sensitivity was found to the allowed range of the imaginary part of the particle refractive index. Our results also indicate that there exists an additive property for the deviations induced by the biases present in the individual optical data. This property permits the results here to be used to predict deviations in retrieved parameters when multiple input optical data are biased simultaneously as well as to study the influence of random errors on the retrievals. The above results are applied to questions regarding lidar design, in particular for the spaceborne multiwavelength lidar under consideration for the upcoming ACE mission.This work was supported by the NASA/Goddard Space Flight Center, the Spanish Ministry of Science and Technology through projects CGL2010-18782 and CSD2007-00067, the Andalusian Regional Government through projects P10-RNM-6299 and P08-RNM-3568, the EU through ACTRIS project (EU INFRA-2010-1.1.16-262254) and the Postdoctoral Program of the University of Granada

    Spatiotemporal changes in aerosol properties by hygroscopic growth and impacts on radiative forcing and heating rates during DISCOVER-AQ 2011

    Get PDF
    This research has been supported by the H2020 Marie Sklodowska-Curie Actions (grant no. 778349), the Spanish Ministry of Economy and Competitiveness (RTI2018101154.A.I00), and by the Russian Science Foundation (project 2117-00114, entitled Development of lidar retrieval algorithms).This work focuses on the characterization of vertically resolved aerosol hygroscopicity properties and their direct radiative effects through a unique combination of ground-based and airborne remote sensing measurements during the Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) 2011 field campaign in the Baltimore-Washington DC metropolitan area. To that end, we combined aerosol measurements from a multiwavelength Raman lidar located at NASA Goddard Space Flight Center and the airborne NASA Langley High Spectral Resolution Lidar-1 (HSRL-1) lidar system. In situ measurements aboard the P-3B airplane and ground-based Aerosol Robotic Network - Distributed Regional Aerosol Gridded Observational Network (AERONET-DRAGON) served to validate and complement quantifications of aerosol hygroscopicity from lidar measurements and also to extend the study both temporally and spatially. The focus here is on 22 and 29 July 2011, which were very humid days and characterized by a stable atmosphere and increasing relative humidity with height in the planetary boundary layer (PBL). Combined lidar and radiosonde (temperature and water vapor mixing ratio) measurements allowed the retrieval of the Hanel hygroscopic growth factor which agreed with that obtained from airborne in situ measurements and also explained the significant increase of extinction and backscattering with height. Airborne measurements also confirmed aerosol hygroscopicity throughout the entire day in the PBL and identified sulfates and water-soluble organic carbon as the main species of aerosol particles. The combined Raman and HSRL-1 measurements permitted the inversion for aerosol microphysical properties revealing an increase of particle radius with altitude consistent with hygroscopic growth. Aerosol hygroscopicity pattern served as a possible explanation of aerosol optical depth increases during the day, particularly for fine-mode particles. Lidar measurements were used as input to the libRadtran radiative transfer code to obtain vertically resolved aerosol radiative effects and heating rates under dry and humid conditions, and the results reveal that aerosol hygroscopicity is responsible for larger cooling effects in the shortwave range (7-10 W m(-2) depending on aerosol load) near the ground, while heating rates produced a warming of 0.12 K d(-1) near the top of PBL where aerosol hygroscopic growth was highest.H2020 Marie Sklodowska-Curie Actions 778349Spanish Ministry of Economy and Competitiveness RTI2018101154.A.I00Russian Science Foundation (RSF) 2117-0011

    Optimized Profile Retrievals of Aerosol Microphysical Properties from Simulated Spaceborne Multiwavelength Lidar

    Get PDF
    This work is an expanded study of one previously published on retrievals of aerosol microphysical properties from space-borne multiwavelength lidar measurements. The earlier studies and this one were done in the framework of the NASA Aerosol-Clouds-Ecosystems (now the Aerosol Clouds Convection and Precipitation) NASA mission. The focus here is on the capabilities of a simulated spaceborne multiwavelength lidar system for retrieving aerosol complex refractive index (m = mr + imi) and spectral single scattering albedo (SSA(λ)), although other bulk parameters such as effective (reff) radius and particle volume (V) and surface (S) concentrations are also studied. The novelty presented here is the use of recently published, case-dependent optimized-constraints on the microphysical retrievals using three backscattering coefficients (β) at 355, 532 and 1064 nm and two extinction coefficients (α) at 355 and 532 nm, typically known as the stand-alone 3β + 2α lidar inversion. Case-dependent optimized-constraints (CDOC) limit the ranges of refractive index, both real (mr) and imaginary (mi) parts, and of radii that are permitted in the retrievals. Such constraints are selected directly from the 3β + 2α measurements through an analysis of the relationship between spectral dependence of aerosol extinction-to-backscatter ratios (LR) and the Ångström exponent of extinction. The analyses presented here for different sets of size distributions and refractive indices reveal that the direct determination of CDOC are only feasible for cases where the uncertainties in the input optical data are less than 15%. For the same simulated spaceborne system and yield than in Whiteman et al., (2018), we demonstrated that the use of CDOC as essential for the retrievals of refractive index and also largely improved retrieval of bulk parameters. A discussion of the global representativeness of CDOC is presented using simulated lidar data from a 24 h satellite track using GEOS model output to initialize the lidar simulator. We found that CDOC are representative of many aerosol mixtures in spite of some outliers (e.g. highly hydrated particles) associated with the assumptions of bimodal size distributions and of the same refractive index for fine and coarse modes. Moreover, sensitivity tests performed using synthetic data reveal that retrievals of imaginary refractive index (mi) and SSA are extremely sensitive to β(355).Marie Skłodowska-Curie Research Innovation and Staff Exchange(RISE) GRASP-ACE (grant agreement No 778349
    • …
    corecore