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	27	

ABSTRACT	28	

This work is an expanded study of one previously published on retrievals of aerosol 29	

microphysical properties from space-borne multiwavelength lidar measurements. The earlier 30	

studies and this one were done in the framework of the NASA Aerosol-Clouds-Ecosystems (now 31	

the Aerosol Clouds Convection and Precipitation) NASA mission. The focus here is on the 32	

capabilities of a simulated spaceborne multiwavelength lidar system for retrieving aerosol 33	

complex refractive index (m = mr + imi) and spectral single scattering albedo (SSA(λ)), although 34	

other bulk parameters such as effective (reff) radius and particle volume (V) and surface (S) 35	

concentrations are also studied. The novelty presented here is the use of recently published, case-36	

dependent optimized-constraints on the microphysical retrievals using three backscattering 37	

coefficients (β) at 355, 532 and 1064 nm and two extinction coefficients (α) at 355 and 532 nm, 38	

typically known as the stand-alone 3β+2α lidar inversion. Case-dependent optimized-constraints 39	

(CDOC) limit the ranges of refractive index, both real (mr) and imaginary (mi) parts, and of radii 40	

that are permitted in the retrievals. Such constraints are selected directly from the 3β+2α 41	

measurements through an analysis of the relationship between spectral dependence of aerosol 42	

extinction-to-backscatter ratios (LR) and the Ångström exponent of extinction. The analyses 43	

presented here for different sets of size distributions and refractive indices reveal that the direct 44	

determination of CDOC are only feasible for cases where the uncertainties in the input optical 45	

data are less than 15 %. For the same simulated spaceborne system and yield than in Whiteman 46	

et al., (2018), we demonstrated that the use of CDOC as essential for the retrievals of refractive 47	

index and also largely improved retrieval of bulk parameters. A discussion of the global 48	

representativeness of CDOC is presented using simulated lidar data from a 24-hour satellite track 49	

using GEOS model output to initialize the lidar simulator. We found that CDOC are 50	

representative of many aerosol mixtures in spite of some outliers (e.g. highly hydrated particles) 51	

associated with the assumptions of bimodal size distributions and of the same refractive index for 52	

fine and coarse modes. Moreover, sensitivity tests performed using synthetic data reveal that 53	

retrievals of imaginary refractive index (mi) and SSA are extremely sensitive to β(355).   54	

 55	

 56	

 57	
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1.-	Introduction	58	

Understanding the role of atmospheric aerosols in the Earth-Atmosphere radiative system 59	

is essential for improving our knowledge of global change. Atmospheric aerosol particles scatter 60	

and absorb solar and near infrared Earth radiation, and also act as cloud condensation nuclei 61	

affecting cloud development and precipitation (e.g. Boucher et al., 2013). In spite of the large 62	

advances during the last decades in understanding aerosol optical depth (AOD) and aerosol size, 63	

there are still uncertainties mainly about aerosol absorption properties (McComiskey et al., 2008; 64	

Loeb and Su, 2010), particularly in their vertical distribution (e.g. Zarzycki and Bond, 2010). 65	

Advancing our understanding of vertically-resolved aerosol absorption will improve our 66	

knowledge of aerosol effects on climate and the capabilities and accuracies in large-scale 67	

numerical models (e.g. Stier et al., 2013). 68	

 In response to the 2017 National Academy of Science Decadal Survey (https://nas-69	

sites.org/americasclimatechoices/2017-2027-decadal-survey-for-earth-science-and-applications-70	

from-space/) NASA initiated the Aerosol Cloud Convection Precipitation (ACCP) mission study 71	

(https://science.nasa.gov/earth-science/decadal-accp). ACCP builds on the heritage of all the 72	

studies carried out during the NASA Aerosol, Cloud, Ecosystems (ACE - 73	

https://acemission.gsfc.nasa.gov/) mission preparatory stage. ACE was identified as a priority in 74	

the 2007 Decadal Survey (https://www.nap.edu/catalog/11820/earth-science-and-applications-75	

from-space-national-imperatives-for-the) and a key aspect in ACE was the deployment of a 76	

space-borne lidar system for aerosol vertical-characterization globally, which would also give 77	

continuity to previous NASA missions such as CALIPSO (Winker et al., 2010) and CATS 78	

(Yorks et al., 2016). ACE mission also used the heritage of other past missions (e.g. GLORY -	79	

https://www.nasa.gov/mission_pages/Glory/main/index.html) focused on detecting plausible 80	

changes of aerosol radiative forcing and on determining quantitatively the contribution of this 81	

forcing to the planetary energy balance (Mischenko et al., 2007). The accuracy requirement for 82	

aerosol complex refractive index (m = mr + imi) and single scattering albedo (SSA) is associated 83	

with the need to constrain aerosol chemical composition, which would permit the discrimination 84	

between natural and anthropogenic aerosol (e.g. Mischenko et al., 2007). Such accuracy implies 85	

to which yield to uncertainties in vertically-resolved aerosol parameters of ±0.05 in mr, ±50% in 86	

mi, and ±20 % in aerosol absorption coefficient To achieve these accurate measurements, the 87	
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candidate ACE lidar system was a multiwavelength High Spectral Resolution Lidar (HSRL - 88	

Shipley et al., 1983) using the heritage of the NASA Langley HSRL-2 system (Hair et al., 2008; 89	

Burton et al., 2018). Such a system allows independent measurements of three backscattering 90	

coefficients (β) at 355, 532 and 1064 nm and two extinction (α) coefficients at 355 and 532nm. 91	

Aerosol depolarization measurements (δ) at 355, 532 and 1064 nm are also possible. A 92	

spaceborne version of this lidar does not exist yet although such an instrument is currently under 93	

consideration by NASA for meeting the challenges set out in the 2017 Decadal Survey. The 94	

combination of a spaceborne HSRL lidar system with other instruments such as a 95	

multiwavelength multi-angle polarimeter, radar and ocean color will provide a unique set of 96	

measurements and allows addressing current scientific challenges in the ACCP mission.  97	

Multiwavelength lidar systems have the ability to retrieve aerosol microphysical 98	

properties by inverting the 3β+2α measurements (hereafter referred as the stand-alone 3β+2α 99	

lidar inversion). The most popular technique for inverting 3β+2α measurements is the well-100	

known regularization technique (e.g. Müller et al., 1999; Veselovskii et al., 2002). Since their 101	

first use on lidar measurements improvements have been made in these techniques resulting in 102	

more robust and efficient computer codes (e.g. 2-d inversion (Kolgotin and Müller, 2008), linear 103	

estimation (Veselovskii et al., 2012), Optimal Estimation (Chemyakin et al., 2014, 2016; 104	

Kolgotin et al., 2016)). The regularization technique has been shown to be effective in the 105	

retrieval of aerosol bulk parameters such as effective radius (reff) and particle number (N), 106	

surface (S), and volume (V) concentrations with many articles published about the 107	

characterization of different aerosol types: biomass-burning (Müller et al., 2005, 2011; 108	

Veselovskii et al., 2015), pollution (Noh et al., 2009; Veselovskii et al., 2013) or arctic haze 109	

(Müller et al., 2004). The regularization technique was also adapted for the retrieval of non-110	

spherical particles (e.g. Veselovskii et al., 2010) with some publications also studying Saharan 111	

dust (e.g. Granados-Muñoz et al., 2016; Veselovskii et al., 2016). 112	

 However, the stand-alone 3β+2α lidar inversion has limited information content for 113	

independent retrievals of complex refractive index and SSA (Veselovskii et al., 2005; Burton et 114	

al., 2016). This implies that the inversion benefits from constraints that are adapted for each 115	

individual inversion, as demonstrated by Perez-Ramirez et al., (2019) where the approach 116	

showed particular promise. These authors used the large database of AERONET inversions (e.g. 117	

Dubovik and King, 2000; Dubovik et al., 2006) to develop case-dependent optimized-constraints 118	
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(hereafter CDOC) that allowed the retrieval of complex refractive index and SSA with 119	

uncertainties remaining within the requirements of the ACE mission (±0.05 in mr, ±50% in mi, 120	

and ±20 % in aerosol absorption coefficient). In that publication, CDOC were used for retrievals 121	

of SSA from HSRL-2 measurements. However, the effect of random and systematic 122	

uncertainties on the estimation of case-dependent optimized-constraints and the retrievals was 123	

not studied. 124	

In the framework of the ACE mission pre-formulation study a spaceborne lidar 125	

simulation study was performed by Whiteman et al., (2018). A large set of different aerosol 126	

mixtures was generated by the Goddard Earth Observing System Model, Version 5 (GEOS-5, 127	

Rienecker et al. 2008), and the model of Whiteman et al., (2001, 2010) was used to generate 128	

simulated spaceborne HSRL measurements. This study also analyzed the yield of the simulated 129	

lidar system and studied the possibility of removing some channels in the retrievals of aerosol 130	

microphysical properties (e.g. stand-alone 3β+1α lidar inversion). The inversions were run 131	

assuming maximum mi of 0.01 which did not allow retrievals for cases with significant 132	

absorption. The results were not very optimistic as they did not provide reliable retrievals of mr 133	

and many other bulk parameters such as reff and V were very sensitive to uncertainties in the 134	

input optical data although other parameters, such as surface area concentration, proved to be 135	

highly resistant to input optical data uncertainties.  136	

 The objective of this work is to study the effects of systematic and random uncertainties 137	

on the determination of CDOC and the retrieval of aerosol complex refractive index and spectral 138	

SSA using those constraints, and also how CDOC can improve retrievals of bulk parameters 139	

such as effective radius (reff) and particle volume (V), surface (S) and number (N) 140	

concentrations. To that end, we perform a set of simulations with known aerosol size distribution 141	

and refractive indices representative of instances when CDOC can be applied. We also propose a 142	

follow-up of the spaceborne simulations done by Whiteman et al., (2018) using the same set of 143	

simulated spaceborne lidar measurements but now using CDOC in order to study if such a 144	

spaceborne lidar system is capable of retrieving aerosol complex refractive index and SSA, and 145	

also aerosol bulk parameters. Detailed discussions of the applicability of CDOC are also 146	

presented. 147	

 148	
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2.-	Methodology:	Use	of	case-dependent	optimized-149	

constraints	in	3β+2α	retrievals	by	regularization	150	

2.1.-Retrievals of aerosol microphysical properties using the regularization technique 151	

The relationships between an ensemble of particle with a given volume size distribution 152	

(v(r)) and their extinction and backscattering coefficients is given by the Fredholm equation as 153	

(Müller et al., 1999a; Veselovskii et al., 2002): 154	

𝑔! 𝜆! = 𝐾!,! 𝑚, 𝑟, 𝜆! 𝑣(𝑟)𝑑𝑟
!!"#
!!"#

	 	 	 (1) 155	

Where gj(λi) denotes the measured optical data, either the extinction (α) or backscattering 156	

(ß) coefficients at wavelength λi for a typical lidar system, and Kj,V(m,r,λi) are the wavelength-157	

dependent volume kernel functions based on Mie theory that depend on wavelength and on 158	

particle radius ‘r’ and complex refractive index m = mr + imi. The regularization technique 159	

(Veselovskii et al., 2002) is used to solve Eq. 1, which uses a linear combination of triangular 160	

basis functions to reconstruct the size distribution. Because the problem is under-determined the 161	

retrieval identifies a group of solutions through a discrepancy parameter (ρ) defined as the 162	

difference between input g(λ) and calculated g'(λ) optical data, with the final solution taken as 163	

the average of all possible solutions with discrepancy of 1% or less. Note that the use of Mie 164	

kernels implies that only spherical particles are considered. 165	

The big limitation of the stand-alone 3β+2α lidar inversion by regularization is the under-166	

determined nature of problem (Veselovskii et al., 2005; Burton et al., 2016), and therefore it is 167	

not possible to retrieve independently aerosol size distribution, bulk parameters and refractive 168	

indices unless constraints are applied to the retrievals. Actually, the use of constraints in the 169	

retrievals is critical for obtaining retrievals of refractive indexes with acceptable uncertainties of 170	

± 0.05 for mr and 50% for mi (Pérez-Ramírez et al., 2019). This implies that a priori information 171	

about the aerosol type is needed. Such additional information can be obtained by using, for 172	

example, measurements of aerosol depolarization for aerosol typing (e.g. Burton et al., 2012, 173	

2013, 2014, 2015) or analyzing spectral dependence of extinction-to-backscatter ratio (otherwise 174	

known as the lidar ratio, LR) and Ångström exponent of extinction (γα) under certain 175	

assumptions as we are studying here. 176	



	 7	

2.2.- Algorithm for the estimation of case-dependent optimized-constraints 177	

The selection of appropriate case-dependent optimized-constraints (CDOC) was 178	

described in details in Perez-Ramirez et al., (2019). Firstly, the selection of CDOC was based on 179	

the column-average results obtained from the large database of AERONET inversions (Dubovik 180	

and King, 2000; Dubovik et al., 2006) that uses sun/sky radiances provides an increase in 181	

information content when compared with the 3β+2α lidar technique. Particularly AERONET 182	

Level 2.0 Version 2 was used and we worked with almucantar inversions and with instantaneous 183	

measurements. We selected worldwide sites representative of biomass-burning and 184	

anthropogenic pollution and we skip inversions with sphericity parameter above 70% to 185	

guarantee working with spherical particles. Actually, long-term data from 30 different stations 186	

were used with a total of ~15000 inversions. The parameters analyzed were aerosol refractive 187	

index and particularly possible relationships between their real and imaginary parts. Results 188	

revealed that generally large mi (> 0.015) were obtained for mr above 1.45 while small mi (< 189	

0.075) were obtained for mr below 1.40 (see Figure 2 in Perez-Ramirez et al., 2019 for more 190	

details). The results of limiting mr with mi were demonstrated to be consistent with the different 191	

aerosol types assumed by the Goddard Chemistry, Aerosol, Radiation, and Transport model 192	

(GOCART – Chin et al., 2002). These general relationships were thus used in the determination 193	

of the constraints for the stand-alone 3β+2α lidar inversion to limit the ranges of mr if a priori 194	

information about mi is known. This approach was shown to stabilize the inversion and provides 195	

retrievals of aerosol refractive index and SSA within the desired uncertainties. But to be clear, 196	

we insist that CDOC were obtained from the analyses of long-term AERONET inversions data 197	

for spherical particles, and thus, on average, makes the stand-alone 3β+2α lidar inversions with 198	

CDOC consistent with the AERONET database. 199	

An overview of the procedure to compute CDOC from 3β+2α measurements is given 200	

here. The base is the use of the graphical methods of Figure 1, which represents LR(532 nm) 201	

versus LR(355 nm) (Figure 1a) and LR(355 nm)/LR(532 nm) versus γα (Figure 1b). Initially is 202	

assumed only predominance of fine mode particles and only unimodal size distributions are used 203	

in the computations. In Figure 1a we observe different regions computed for rmodal = 0.075, 0.10, 204	

0.14, and 0.18 µm and mi= 0, 0.005, 0.01, 0.025, 0.05 and 0.075, with width of the size 205	

distributions σ = 0.4 µm. The graph shown is only representative for mr = 1.55, but are also 206	
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computed for mr = 1.35, 1.45 and 1.65 (not shown for clarity). Dashed lines represent fixed mi 207	

with rmodal variable, while continuous lines imply fixed rmodal and variable mi. The plot permits to 208	

directly estimate imaginary refractive index (mi’) from spectral LRs measurements under the 209	

assumptions of unimodal size distribution. 210	

The graph of Figure 1b shows LR(355 nm)/LR(532 nm) versus γα using again unimodal 211	

size distribution with rmodal = 0.075, 0.10, 0.14, and 0.18 µm, but now varying for different values 212	

of real refractive index of mr = 1.35, 1.45, 1.55 and 1.65. This Figure serves to evaluate the 213	

estimated mi’ from Figure 1a. Figure 1b is just an example for the case when mi’ is close to 0.01. 214	

Actually, Figure 1b and permits the evaluation of mi’ previously calculated by computing an 215	

estimation of the real refractive index (mr’): if the difference between mr’ and the value used in 216	

Figure 1a (1.55 in our case) is larger than ±0.05, then mi’ is rejected and assumed as not valid. 217	

But the graphical methods of Figure 1 must be used carefully. In Figure 1a different mi' 218	

are obtained when varying the assumed mr in plot computations. Similar happens in Figure 1b 219	

when varying the assumed mi. To solve these issues, we propose a step-by-step procedure that 220	

consists of repeating the procedure described in the previous paragraph for mr = 1.35, 1.45 and 221	

1.65, which consequently imply re-computing both plots in each step: Each assumed mr will 222	

provide an estimate of mi’ that later is used to compute its corresponding Figure 1b. Once Figure 223	

1b is built with mi close to mi' the computation of mr' is possible and finally mi’ is evaluated with 224	

the condition mr – mr’ ≤ ±0.05. That can provide up to four different pairs of (mr’, mi’), and from 225	

the pairs not rejected the average mi’ is computed and denoted as mi,optimized. AERONET derived 226	

relationships between mi and mr are used to compute the optimized real refractive index 227	

(mr,optimized,). Such values of mi,optimized and mr,optimized together with the initial estimation of fine 228	

mode predominance serve eventually as the CDOC: Determination of mi,max allowed in the 229	

inversion as 2.5mi,optimized, limitation of mr within mr,optimized±0.05, and maximum range of radius 230	

allowed in the inversion up to 2 µm (details in Perez-Ramirez et al., 2019). 231	

However, with the previous step-by-step procedure is possible that the four different pairs 232	

(mr’, mi’) are rejected and consequently imply that the assumption of fine mode predominance is 233	

not fulfilled. Therefore, the aerosol size distribution is now assumed as bimodal with relevance 234	

of coarse mode particles. But we insist here that our approach is only for spherical particles, and 235	

this coarse mode is either representative of the residual coarse mode observed in AERONET for 236	
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biomass-burning or pollution events (Dubovik et al., 2002) or for the presence of marine aerosol 237	

particles (coarse particle with residual fine mode). Nevertheless, there could be possible that 238	

such mixtures present large mi (e.g. larger than 0.01) and we developed a graphical method that 239	

consists of plotting LR(532 nm) versus LR(355 nm) for the same sets of mi than in Figure 1 but 240	

varying the ratio between fine and coarse mode in the range 0.1-2. Our analyses revealed that 241	

computation of mi’ for mr = 1.55 was representative of any mixture (see Fig.6 in Pérez-Ramírez 242	

et al., 2019) and thus serves for a direct computation of mi,optimized. CDOC were computed with 243	

mi,max= 2.5mi,optimized and maximum radius allowed of 10 µm. No limitations in mr are assumed in 244	

mixtures. 245	

   [Insert Figure 1 here] 246	

The algorithm to determine CDOC was demonstrated as consistent when applied to 247	

NASA Langley HSRL-2 system (Hair et al., 2008; Burton et al., 2018) and compared with 248	

aerosol typing from spectral depolarization analyses (Burton et al., 2012, 2013, 2014) during 249	

DISCOVER-AQ field campaigns (https://www-air.larc.nasa.gov/missions/discover-aq/discover-250	

aq.html): urban polluted aerosol at high relative humidity and consequently low absorbing was 251	

classified as fine mode predominance and low-absorbing aerosol, while fresh and dry biomass-252	

burning was classified as fine mode predominance and medium-absorbing aerosol. Finally aged-253	

biomass burning was classified as mixture of fine and coarse mode and medium absorbing 254	

aerosol. Moreover, during DISCOVER-AQ was possible to analyze retrievals of SSA with 255	

CDOC using HSRL-2 with correlative in-situ measurement onboard airborne platforms and the 256	

comparison revealed that differences were within the uncertainties expected in each 257	

methodology. However, the sensitivity of the algorithm to determine CDOC to random and 258	

systematic uncertainties was not study, and to that end we perform in this work consequent 259	

analyses on this issue. 260	

3.-Results	261	

3.1. Effects of random uncertainties in the retrievals of aerosol refractive index and single 262	
scattering albedo from stand-alone 3β+2α lidar inversion using case-dependent, optimized 263	
constraints. 264	

The sensitivity of the CDOC algorithm to varying levels of random uncertainty is studied 265	

here using synthetically generated 3β+2α measurements and then adding random uncertainties. 266	
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The assumed aerosol size distributions for generating these synthetic measurements were 267	

unimodal and representative of a fine mode predominance with rmodal = 0.08, 0.10, 0.12, 0.,14 268	

and 0.16µm, with mr = 1.35, 1.45, 1.55, 1.65 and mi = 0.001, 0.005, 0.01, 0.025, 0.05 and 0.075. 269	

Also, for cases representing both fine and coarse mode, bimodal size distributions were used 270	

with fine mode at rfine = 0.14 µm and σfine =0.4 µm, coarse mode at rcoarse = 1.5 µm and with 271	

σcoarse =0.6 µm and Vf/Vc of 2, 1, 0.5, 0.2 and 0.1. In these bimodal size distributions refractive 272	

indices used were mr = 1.35, 1.45, 1.55 and 1.65 and mi = 0.001, 0.005, 0.01, 0.02, 0.025, 0.03. 273	

These size distributions are representative of most of the situations obtained from AERONET 274	

retrievals (e.g. Dubovik et al., 2002): unimodal size distributions are representative of cases with 275	

only fine mode (e.g. pollution). Bimodal size distributions are representative of some biomass-276	

burning cases that present a residual coarse mode (e.g. Vf/Vc = 2) and also of marine aerosol that 277	

present a residual coarse mode (e.g. Vf/Vc = 0.2). Cases with only predominance of coarse mode 278	

are mostly typical of dust particles (non-spherical particles) that are not included in our analyses. 279	

Uncertainties were generated using a random number generator that follows Gaussian 280	

distribution centered at zero with width according to the value of the random uncertainty desired, 281	

and with a total of 10 000 random numbers representative of that Gaussian distribution.  These 282	

random numbers were representative of uncertainties in the optical data, and were applied for 283	

each optical channel individually assuming no correlation among them. The same procedure is 284	

later applied for the other channels but the initiation of the random number generator was 285	

different in order to avoid the situation where all the random numbers were the same. After 286	

adding random uncertainties to the corresponding optical data, the algorithm for determining 287	

CDOC was then applied. Nevertheless, in a real system there could be some kind of dependences 288	

between optical channels accuracies with different sensitivities to error in the optical data (e.g. in 289	

a real system accuracy in extinction is generally lower than in backscattering), which will require 290	

specific analyses when dealing with an specific lidar system. 291	

The results are summarized in Table 1 for the cases of 5, 10, 20, 30 and 50 % random 292	

uncertainties in the optical data. For simplicity, we present the results in five different groups 293	

depending on the size distributions and mi used for generating the 3β+2α measurements: fine 294	

mode and low absorption where input mi ≤ 0.01, fine mode and medium absorption with 0.01 < 295	

mi< 0.04, and finally fine mode and high absorption with input mi ≥ 0.04. Also, for mixtures 296	

when both modes show significant presence, we separate between low absorption (mi< 0.01) and 297	
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medium absorption (0.01 <mi< 0.04). We do not expect very large absorption in mixtures (mi> 298	

0.04) because such cases in our approach would correspond to a large presence of black carbon 299	

that is only realistic for a strong predominance of fine particles (e.g. Chin et al., 2002). The 300	

estimation of CDOC is considered to have operated correctly if the datum is classified in its 301	

original range of inversion. An overview of the results is given in Table 1which shows the mean 302	

percentages of data classified in each group after adding random uncertainties to the input optical 303	

data. We do not include 0% random uncertainty in the tables for inputs with no random 304	

uncertainty since, with no added uncertainty, the correct selection of case is made 100% of the 305	

time. 306	

  307	

    [Insert Table 1 here] 308	

 309	

 Table 1 clearly indicates that for every aerosol type the success in determining the correct 310	

aerosol type decreases as random uncertainties increase. Initially, we establish the allowable 311	

amount of uncertainty when the percentage of data classified correctly is close to one standard 312	

deviation. For random uncertainties of 5% all cases are well classified (percentages above 90%), 313	

although with lower percentages (∼80%) for mixtures with low absorption due to the difficulties 314	

associated with the retrieval of mixtures of particles (e.g. Dubovik et al., 2000; Pérez-Ramírez et 315	

al., 2015). For 10 % random uncertainties the percentages are around 70-75% for all cases. 316	

However, for random uncertainty larger than 20 % the degradation in the aerosol classification 317	

becomes quite significant in general with some aerosol types being classified better than others. 318	

Dealing with uncertainties larger than 20% implies several limitations in the aerosol 319	

classification that eventually affects the retrieved parameters. More specifically, for fine mode 320	

predominance with low absorption the percentage of cases classified as low absorbing mixtures 321	

increases, which is critical for constraining the range of radii that eventually affects the retrieval 322	

of bulk parameters such as volume concentration (Pérez-Ramírez et al., 2013). For fine mode 323	

predominance with medium and high absorption the incorrect classification as low absorption 324	

will not allow retrievals of high values of mi (> 0.01) and of low SSA (< 0.95). Finally, mixtures 325	

of aerosol types in the presence of larger uncertainties in the optical data yield larger deviations 326	

with many points classified as fine mode and low absorption increases. The failure of the 327	
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algorithm in the classification of mixtures is explained by the fact that large random uncertainties 328	

in the optical data cause an incorrect interpretation of the spectral dependence in LRs. 329	

 The full impact of random uncertainties on the retrieval of aerosol complex refractive 330	

index and spectral SSA is studied by evaluating the stand-alone 3β+2α lidar inversion with 331	

CDOC using simulated optical data affected by varying amounts of random uncertainty. The 332	

results with error-free data are used as reference. Mean differences between these two sets of 333	

inversions are computed, with the results summarized in Table 2 for random uncertainties of 5, 334	

10, 15, 20 and 50%. Note that because we are comparing with noise-free data results only 335	

indicate deviation of the retrievals with noise in the input optical data. Accuracy for the retrievals 336	

was studied in Perez-Ramirez et al., (2019) and differences between retrievals and input values 337	

from size distributions, refractive indexes and SSA were within the uncertainties only when 338	

using CDOC. We also recall that according to ACE science white paper acceptable uncertainties 339	

in mr are of ±0.05, while for mi they are of approximately ±50 % (approximately ±0.005, ±0.01 340	

and ±0.025 for low, medium and high absorption, respectively). If we take 20% as the upper 341	

limit uncertainty in absorption coefficient, the corresponding uncertainties in SSA become ±0.02, 342	

±0.04 and ±0.05 for low, medium and high absorption, respectively.  343	

 We note that due to the limited information content (Veselovskii et al., 2005) spectral 344	

dependence of refractive index cannot be obtained, and the code internally assumes flat 345	

refractive index in the retrieval procedure (Veselovskii et al., 2002, 2004). That assumption 346	

directly implies a limitation of the retrieval. Nevertheless, according to the literature spectral 347	

dependence in retrieved imaginary refracted index is minimum for fine mode particles, while can 348	

be important for non-spherical particles such as mineral dust (Dubovik et al., 2002). Because we 349	

are working with spherical particles, our assumption of flat refractive index with wavelength is 350	

minimized. Nevertheless, all these limitations, together with the limitations to retrieve coarse 351	

mode of size distribution (Whiteman et al., 2018), imply also limitations in the spectral retrieval 352	

of SSA: for fine mode predominance SSA retrievals are only acceptable at 355 and 532 nm, 353	

while they degrade as coarse mode increase implying better retrievals at 1064 nm (see Figures 7 354	

and 8 in Perez-Ramirez et al., 2019 for details) 355	

    [Insert Table 2 here] 356	

 Table 2 shows that mean differences are below the allowed uncertainties of each 357	

parameter for random uncertainties up to 10%. For 15% uncertainties deviations in retrieved 358	
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parameters are in the middle and are acceptable for the established thresholds. For random 359	

uncertainties larger than 20% the retrievals clearly fail for all parameters as is observed in the 360	

mean differences for random uncertainties of 50%. Therefore, random uncertainties must be 361	

below 15% to guarantee successful retrievals of aerosol refractive index and single scattering 362	

albedo. 363	

3.2. Effects of systematic uncertainties in the input optical data on the stand-alone 3β+2α 364	
lidar inversion using case-dependent optimized constraints. 365	

 366	
The impact of systematic uncertainties on the retrievals of aerosol bulk parameters using 367	

the stand-alone 3β+2α lidar inversion was studied in Perez-Ramirez et al., (2013) for spherical 368	

and low-absorbing particles (mi,max = 0.01) using a fixed set of inversion constraints. Here we 369	

extend those analyses by using CDOC, and in particular we focus on how systematic 370	

uncertainties affect the retrieval of aerosol refractive index and spectral SSA.  371	

For the fine mode predominant cases we use the same sets of rmodal and refractive indexes 372	

as in the simulations for studying the effects of random errors. For simplicity we show the results 373	

for rmodal = 0.14 µm and for three different mi representative of low (mi = 0.005), medium (mi = 374	

0.025) and high (mi = 0.05) absorptions. From these size distributions, optical data 3β+2α are 375	

generated using Mie theory. Later, we run the stand-alone lidar inversion using CDOC and 376	

obtain the retrieved microphysical parameters ‘Xret’. In the approach followed we compute 377	

CDOC for free-noise data and applied these constraints when biases are applied to optical data. 378	

Comparisons of retrieved values with CDOC for free-noise data with reference was done in 379	

Perez-Ramirez et al., (2019) and differences were within uncertainties. Thus, the evaluations 380	

presented here of comparing free-noise data with noisy data will serve to evaluate the 381	

degradation of retrieved parameters. 382	

The procedure for evaluating the effects of systematic uncertainties consists of applying a 383	

systematic bias, denoted as Δε, to one optical datum at a time. The bias varies from -30% to 384	

+30% in 10 intervals, and this is repeated for each of the 5 optical data. For each of these 385	

induced biases, a new set of microphysical parameters Xbias, is then obtained. The comparisons 386	

are expressed as the percentage difference ΔX = 100·(Xbias−Xret)/Xret, where 'X' corresponds to 387	
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bulk parameters (reff, V, S and N) and also to mi. For mr and spectral SSA we use instead ΔX = 388	

Xbias−Xret. 389	

Figure 2 shows the results of ΔSSA at 355 nm for low, medium and high absorbing cases. 390	

The focus is on 355 nm because this is the wavelength where earlier studies have indicated that 391	

SSA retrievals for fine mode predominance are more reliable (Perez-Ramirez et al., 2019). The 392	

error bars indicate one standard deviation after averaging the four different values of mr used in 393	

the retrievals, and to make Figure 2 more legible we only plot the error bars for β(355) - the error 394	

bars for the other quantities are similar or even lower in magnitude. Approximately linear 395	

patterns in the deviations of ΔSSA versus bias in the optical data are observed. But the most 396	

important result here is that for biases of up to 30% in the input data, the associated deviations in 397	

SSA are within the desired range. The sole exception is β(355), which is shown thicker to remark 398	

the large sensitivity of SSA retrievals to errors in β(355). The errors in SSA also show significant 399	

sensitivity to biases in β(532) for medium absorbing cases and α(355) for high absorbing cases 400	

although still the errors stay within the desired limits for biases up to ±30%. Scattering and 401	

absorption cross-sections present larger dependence to imaginary refractive index than extinction 402	

cross-sections (e.g. Bohren and Huffman, 1998: Mischenko et al., 2002), which could explain the 403	

larger sensitivity to errors in the input optical data for SSA retrievals. Moreover, backscattering 404	

cross sections are proportional to λ-4 (Kovalev and Eichinger, 2004), which could explain the 405	

larger sensitivity to bias in β(355). The large sensitivity of errors in SSA to bias in the β(355) 406	

measurement is added now to the information regarding biases in bulk parameter inversions that 407	

were studied in Pérez-Ramírez et al., (2013), where the only optical inputs showing significant 408	

sensitivity to systematic uncertainty were the extinction coefficients.  409	

For cases with fine mode predominance, Table 3 summarizes the standard deviations in 410	

ΔSSA when biases in the optical data are applied. Minima are associated with the results using 411	

optical data that are the least sensitive to uncertainties, while maxima are associated with the 412	

results using the most sensitive optical data. The results indicate than these standard deviations 413	

are above the admitted uncertainties in SSA for uncertainties above 15%.  Therefore, the 414	

analyses of systematic uncertainties are consistent with the previous finding of section 3.1 and 415	

we conclude that in general uncertainties must be below 15%. Note that standard deviations for 416	

retrieved SSA at 1064 nm are similar to these for other wavelengths, which combined with the 417	
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failure of SSA retrievals at 1064 nm for noise-free data (see Figure 7 in Perez-Ramirez et al., 418	

2019) is an intrinsic limitation of the stand-alone 3β+2α lidar inversion for fine mode particles 419	

predominance, probably associated with the limited information content (Veselovskii et al., 420	

2005).             421	

    [Insert Figure 2 here] 422	

    [Insert Table 3 here] 423	

For the cases of mixtures of both fine and coarse mode the same scheme has been 424	

applied: simulations were performed for a bimodal size distribution with fine mode rfine = 0.14 425	

µm, σfine =0.4 µm and coarse mode rcoarse = 1.5 µm,σcoarse =0.6 µm. But for simplicity we only 426	

show the results for imaginary refractive indices of 0.005 and 0.025 representing low and 427	

medium absorption, respectively. Simulations were then done for two different fine-to-coarse 428	

volume ratios Vf/Vc of 1 (mostly fine mode) and 0.2 (mostly coarse mode). Results of these 429	

sensitivity studies for SSA are shown in Figure 3. We only represent results for SSA at 532 and 430	

1064 nm because of the limitations for retrievals at 355 nm in mixture of particles cases (see 431	

Figure 8 in Perez-Ramirez et al., 2019 that reveals a failure of the inversion in SSA retrieval at 432	

355 in the cases of mixtures of fine and coarse mode). The standard deviations associated with 433	

the inversion of the simulation at different mr are represented only for β(355) and α(355) for 434	

clarity. 435	

   [Insert Figure 2 here] 436	

Figure 3 illustrates again approximately linear patterns of ΔSSA versus biases in the 437	

optical data. However, there are dependencies with size distribution and input refractive index: 438	

for mi = 0.005 we find that systematic uncertainties in β(355) have the largest influence on 439	

derived SSA(532), although ΔSSA stays within the desired uncertainties (±0.02) with 440	

uncertainties as large as ±30%. However, with SSA(1064) systematic uncertainties larger than 441	

approximately 10% cause deviations that go beyond the desired range of ±0.02. The effects of 442	

biases in α(355) in SSA(1064) are not negligible for Vf/Vc = 1, although the deviations are close 443	

to the limit. On the other hand, for mi = 0.025 increases in ΔSSA with the same input biases are 444	

clearly observed, and again β(355) is the most sensitive parameter, both for 532 and 1064 nm. 445	
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However, sensitivity to α(355) becomes critical for these higher absorbing cases, with larger 446	

standard deviations compared to other optical data. Sensitivity to α(532) is also important for  447	

Vf/Vc = 0.2, but with opposite signs between SSA at 532 and at 1064 nm. 448	

A summary of the study of sensitivities of SSA retrievals to systematic uncertainties in 449	

the input optical data for mixtures of fine and coarse particles is given in Table 4. The standard 450	

deviations are given for each range of biases in optical data. Again, the minima are associated 451	

with the least sensitive optical datum and the maxima with the most sensitive. We also include 452	

the standard deviations for SSA(355). From Table 4 it can be seen that in almost all cases for 453	

systematic uncertainties up to 15% (and for most cases up to 20%) deviations in the retrieved 454	

SSA remain below the desired limit of ±0.02. For larger biases, however, deviations from the 455	

reference are only below uncertainties for 532 nm independently of the range of absorption, 456	

while for 355 and 1064 nm this is only observed for low absorption. These results illustrate again 457	

that CDOC provide generally reliable results for systematic uncertainties up to approximately 458	

15% as observed previously in fine mode predominance, and under certain circumstances larger 459	

biases can be tolerated. Note now that standard deviations for ΔSSA at 355 nm are similar to 460	

these for 1064 nm, which indicates a stability of the retrieval and could imply that the lack of 461	

accuracy in SSA at 355 nm for mixtures is associated with the limited information content of the 462	

measurements and perhaps of the retrieval technique as well.  463	

    [Insert Table 4 here]	464	

For studying the effects of systematic uncertainties on the retrieval of aerosol refractive 465	

index, the same procedure is followed separately for mr and mi. As an illustration, Figure 4 466	

shows Δmr and Δmi for the case of fine mode predominance and medium absorption. From 467	

Figure 3 can be observed that for mr the extinction coefficients are the most sensitive parameters, 468	

although the effects of β(1064) are not negligible. For mi, β(355) measurements are the most 469	

critical, although overestimations of β(532) are not negligible. But the most important point is 470	

that the observed deviations are always within the desired limits (±0.05 for mr and approximately 471	

0.01 for mi in this case of medium absorption) for biases up to ±30%. However, now the 472	

standard deviations are of the same magnitude as the deviations and they must be taken into 473	

account in the final error estimation. For mr the sum of mean deviation plus standard deviations 474	
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is above the uncertainties (±0.05) for biases above ±20%, and the same is observed for mi. We 475	

also note that additional evaluations revealed very similar patterns after changing the range of 476	

absorption and the type of size distribution in the simulation of optical data (graphs not shown 477	

for brevity).  478	

    [Insert Figure 4 here] 479	

For bulk parameters such as reff, V, S and N the same study was done and again generally 480	

linear patterns are observed for Δx = (xbias – xret)/xret for all the ranges of absorption (graphs not 481	

shown for brevity). As summary, the slopes of the linear fits are given in Table 5 for fine mode 482	

predominance and for each range of absorption. Positive slopes indicate lower values of bulk 483	

parameters when the optical data are affected by negative biases versus when they are not 484	

affected by biases, while for positive slopes just the opposite occurs. In Table 5 changes in the 485	

slopes of the linear fits are observed when going from low to medium/high absorptions. But the 486	

changes are only limited to the absolute value of slopes being generally higher for high 487	

absorption.  488	

    [Insert Table 5 here] 489	

The most important result from Table 5 is that the most sensitive optical channels to 490	

biases are the extinction coefficients in agreement with the results presented in Perez-Ramirez et 491	

al., (2013) for non-absorbing aerosol. This last result reveals that there are no relevant changes in 492	

the sensitivity to biases in the optical data for the bulk parameters, which is sensible because the 493	

use of CDOC in the retrieval of bulk parameters is not critical. Surface concentration is relatively 494	

insensitive to changes in absorption range. Particle volume is the least sensitive to biases in 495	

optical data.  Number concentration, however, is the most sensitive to these biases. For reff, the 496	

sensitivity is in the middle between number and volume concentration, and the most important is 497	

that the sign of the slopes for extinction coefficients are in opposite to those in number, surface 498	

and volume concentrations. Finally, additional evaluations of bulk parameters for cases when the 499	

input size distribution is a mixture of fine and coarse mode revealed very similar results to those 500	

of Table 5. 501	
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As was done previously in Perez-Ramirez et al, (2013), we next considered whether the 502	

combination of systematic uncertainties in the optical data for several channels reproduces the 503	

results of the analyses presented in section 3.2 for random uncertainties. That is, we try to answer 504	

the question about the additivity of the generally linear patterns observed for biases due to 505	

systematic uncertainties. To that end, we studied the differences between deviations in retrieved 506	

parameters affected by random uncertainties and deviations computed using the linear patterns 507	

resulting from systematic biases. Our results showed no significant differences which is an 508	

indication of the additivity of the differences when optical data are affected by biases.   509	

3.3. Case-dependent optimized-constraints applied to GEOS: Study of aerosol 510	
hygroscopicity. 511	

 For the evaluation of the algorithm for determining CDOC of Section 3.1 for retrievals of 512	

different aerosol types we used the special aerosol study cases generated by the Goddard Earth 513	

Observing System Model, Version 5 (GEOS, Rienecker et al. 2008). GEOS incorporates the 514	

GOCART model (Chin et al., 2002) for simulating different aerosol types (sulphate, organic 515	

carbon, black carbon, and sea salt) with dust assumed as a non-spherical specie (Colarco et al., 516	

2014) and excluded in our analyses. GEOS also includes an atmospheric general circulation 517	

model, representations of atmospheric physics including moist processes and chemistry. 518	

Particularly, a GEOS nature run was used for a 24-hr track of the CALIPSO satellite from July 519	

15, 2009, which provided a total of 8640 profiles, each one with 72 different levels of altitude. 520	

Details of these GEOS simulations are in Whiteman et al., (2018). 521	

 An important effect to evaluate is that of relative humidity because of the internal 522	

assumptions in GOCART: The shape of the size distribution does not change as a function of 523	

relative humidity, but there is a displacement of modal radius toward larger radii as relative 524	

humidity increases, while the width of the size distribution remains the same. Also, for fine mode 525	

predominance particles such as sulphate, organic carbon and black carbon GOCART imposes a 526	

strict threshold on size such that no particles with radii above 0.5µm are included, independent of 527	

any hygroscopic size increase. Refractive indices of the size distributions affected by 528	

hygroscopic growth do indeed change, with mr decreasing to values close to 1.35 and mi to 529	

values almost negligible (below 0.005) as relative humidity increases to values close to 99%. 530	

Details of the effects of relative humidity on aerosol size distribution in GOCART can be 531	

consulted in Table 2 of Chin et al., (2002). 532	
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 Here we evaluate if the algorithm for determining CDOC is useful in these aerosol cases 533	

highly affected by relative humidity in GEOS simulations. Figure 5 shows the differences 534	

between the imaginary refractive index given by GEOS (mi,GEOS) versus mi,optimized computed 535	

from the algorithm of section 3.1 using 3β+2α measurements from GEOS data. The differences 536	

are represented versus mi,optimized, and we divide the results into four different categories: no 537	

limitations on relative humidity (Figure 5a) and with relative humidity below 90% (Figure 5b), 538	

75% (Figure 5c) and 50% (Figure 5d). The dashed lines represent the ±2.5mi,optimized which is 539	

assumed to be the appropriate value of mi,max for optimizing the stand-alone 3β+2α lidar 540	

inversion (Perez-Ramirez et al., 2019). We have skipped in our analysis cases with a large 541	

percentage of dust and also of large sea salt particles because the stand-alone 3β+2α lidar 542	

inversion is not capable of retrieving properties of such big particles due to limitations in 543	

information content (Whiteman et al., 2018). 544	

[Insert Figure 5 here] 545	

Figure 5 reveals that when no limitations are applied on relative humidity approximately 546	

121 cases over 1137 give mi,GEOS - mi,optimized greater than  ±2.5 mi,GEOS. These 121 cases 547	

typically present mi,optimized < 0.005 and mi,GEOS > 0.01. However, the number of failures cases 548	

applying CDOC is reduced when limiting relative humidity (94, 91 and 28 for thresholds of 90, 549	

75 and 50% RH, respectively). We therefore conclude that CDOC have limitations for the 550	

assumptions in GOCART when aerosol is affected by hygroscopicity.  551	

 To better understand the effects of relative humidity on mi,optimized we have performed 552	

additional simulations with different aerosol size distributions that can be representative for 553	

aerosol hygroscopicity. Particularly, for different monomodal size distributions we computed 554	

3β+2α data using Mie theory. Such a set of simulated measurements were used to compute 555	

LR355, LR532 and γα which were then used as inputs to the algorithm described in section 3.1 556	

and eventually provides CDOC. Results are summarized in Table 6 for size distributions with 557	

rmodal = 0.12, 0.16, 0.20, 0.25 and 0.30 µm, and σ = 0.4, 0.6 and 0.8 µm. Imaginary refractive 558	

index used was of 0.005 representative of no-absorption while mr was 1.35, representative of 559	

highly hydrated aerosol (except for rmodal = 0.12 that assumes mr = 1.45 typical of non-560	

absorbing and non-hydrated particles). 561	

 562	
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    [Insert Table 6 here] 563	

 564	

 The simulations in Table 6 help us to understand the effect on determining CDOC 565	

(based on the algorithm described in section 2.2) to different assumptions for changes in size 566	

distributions with aerosol hygroscopic growth: Initially, the dry size distribution can be 567	

assumed for rmodal = 0.12 µm. Hygroscopic growth implies bigger particles and the simplest 568	

approach to achieve that is to just assume a displacement of the rmodal to larger values keeping 569	

the width of the distribution, σ, the same. Under such assumptions, results of Table 6 show 570	

that for rmodal> 0.20 µm the algorithm of section 2.2 for determining CDOC fails.  The second 571	

approach to account for aerosol hygroscopicity assumes that particles below the detection 572	

limit for the 3β+2α technique also grow and become detectable, implying a larger width of the 573	

size distributions. These size distributions with larger width do not provide appropriate 574	

aerosol classification for rmodal ≥ 0.20 µm. Nevertheless, if wider size distributions are 575	

assumed as consequence of hygroscopic growth rmodal ≥ 0.20 µm should be less frequent and 576	

thus not affecting critically to the retrievals.  577	

 578	

Based on the preceding discussion we can better understand the reasons that data are 579	

rejected from Figure 5. Actually, from that Figure cases with relative humidity > 75 % and 580	

low absorption (i.e. the mean mi obtained is 0.005 ± 0.003) microphysical (from GOCART) 581	

parameters were very stable, with mean values of reff = 0.26 ± 0.07 µm and mr = 1.38 ± 0.02, 582	

typical of hydrated particles. The input parameters for the algorithm of section 2.2 have mean 583	

values of γα = 0.76 ± 0.21, LR355 = 87 ± 7sr and LR532 = 87 ± 9 sr. CDOC provided mixtures 584	

(either low or medium absorptions) or fine mode predominance with medium and high 585	

absorption, which consequently is incorrect according to their values from GOCART. Similar 586	

results were obtained when limiting relative humidity> 0.90 but with lower mean values of γα 587	

(0.65 ± 0.18) and higher lidar ratios (LR355 = 89 ± 5 sr and LR532 = 93 ± 7 sr). These results 588	

together with the simulations analysed in Table 6 reveal that the algorithm for determining 589	

CDOC constraints does not work appropriately for hydrated aerosols following the 590	

approaches considered in this manuscript. For these reasons we skip highly hydrated aerosol 591	

(typically, RH >80%) in the following section. 592	

 593	
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 3.4. –The impact of case-dependent optimized-constraints on retrievals from a 594	

simulated space-borne HSRL lidar system 595	

 To better quantify the performance of the CDOC in the retrieval of the vertical profile 596	

of aerosol microphysics, we first study the retrievals directly from the GEOS simulations 597	

themselves which amounts to an error-free simulation of lidar performance. To that end, we 598	

remove the outliers from Figure 5 (typically for RH >80%) and study differences between 599	

retrieved and GEOS-5 values of all aerosol microphysical properties. The metrics used here 600	

for quantifying differences between retrieved and reference values are the same as in 601	

Whiteman et al., (2018). For example, for bulk parameter deviations is a root-mean-square 602	

value calculated as a percentage as: 603	

     !""
!

!!"#$!!!"# !
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     (2) 604	

where XGEOS is the reference bulk parameter from GEOS-5 and Xret is the retrieved bulk 605	

parameter using CDOC in the3β+2α lidar inversion. N is the total number of data in the 606	

computation of the root-mean-squares. For aerosol refractive index and single scattering 607	

albedo, we calculate the fractional deviation metric as: 608	

     !!"#$!!!"# !

!
     (3) 609	

Eqs. (2) and (3) were evaluated for each individual retrieval run with CDOC constraints, and the 610	

composite values are summarized in Table 7. We separate again among three different ranges of 611	

absorption for clarity: low absorption with mi ≤ 0.01, medium absorption with 0.01 < mi< 0.04 612	

and high absorption with mi ≥ 0.04. Deviations are color-coded based on the magnitude of the 613	

deviation. Details of each color-code are summarized in Table 8. We note that Table 8 is very 614	

similar to Table 6 presented in Whiteman et al., (2018) but with the particularity that Table 8 615	

provides color-code discrimination for different ranges of mi and also for SSA at different ranges 616	

of mi. The color thresholds used for bulk parameters are related to the uncertainties described in 617	

the ACE mission draft report. 618	

     [Insert Table 7 here] 619	

     [Insert Table 8 here] 620	
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 The main result from Table 7 is the capacity of the stand-alone 3β+2α lidar inversion 621	

with CDOC to retrieve aerosol microphysical properties for different aerosol types and 622	

mixtures when applied to noise-free data. This statement is supported because most retrievals 623	

are 'green' independently of the absorption range. We note that the outputs from GEOS do not 624	

provide information separately about fine or coarse mode but rather only the total mass of 625	

each species. We could argue that sulphate and carbonaceous species are fine mode while dust 626	

and sea salt species are coarse mode. But from real AERONET observations pollution and 627	

biomass-burning can have a residual coarse mode, and similarly sea salt and dust can have a 628	

residual fine mode (e.g. Dubovik et al., 2002). For these reasons we did not perform any 629	

separation between fine modes and mixtures using GEOS data, although the influence of fine 630	

mode is always large because we are skipping mineral dust in our analyses and the majority of 631	

the cases in the simulation present important contributions of sulphate and carbonaceous 632	

species. Nevertheless, the results presented here show a large improvement when compared 633	

with those of Whiteman et al., (2018) (c.f. Table 4) who evaluated the stand-alone 3β+2α lidar 634	

inversion from GEOS data limiting the maximum imaginary refractive index to 0.01 and 635	

without using case-dependent constraints as used here. The only important failure is in the 636	

retrieval of SSA at 1064 nm because of the lack of accuracy of the stand-alone 3β+2α lidar 637	

inversion in the retrieval of SSA at 1064 nm for aerosol for fine mode predominance (Perez-638	

Ramirez et al., 2019) that as commented has important influence in the database used for the 639	

simulations. 640	

 The stand-alone 3β+2α lidar inversion with CDOC for a simulated ACE lidar system is 641	

performed here. Details of the simulated space-borne lidar system are in Whiteman et al., 642	

(2018). Basically, it consists of the simulation of space-borne multiwavelength High Spectral 643	

Resolution Lidar (HSRL) measurements assuming a 1.5 m telescope with field of view of 130 644	

microradians, a Nd:YAG laser operating at 100 Hz with power outputs of 10W at 1064 and 645	

532 nm and 5W at 355 nm. The simulation approach used is described in Whiteman et al., 646	

(2001, 2010) and implements the lidar equations and carries all physical units through the entire 647	

simulation chain including for background skylight (Measures, 1984). The random uncertainties 648	

that are output by the lidar simulator are a direct result of the lidar equation and the 649	

assumption of Poisson statistics in the measurement process. The molecular and particle 650	

profiles on which the simulations are based come from. Here we work with four different 651	
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ranges of random uncertainty: from 0-15 %, 15-20 %, 20-30% and 30 - 50%. The performance 652	

of the inversions as a function of random uncertainty has a large impact on the yield of a space-653	

borne lidar system (Whiteman et al., 2018) which we will comment on later, but here we will 654	

focus on their impact on the retrievals of aerosol microphysical properties. 655	

 Table 9 shows the main results of the retrieval of aerosol microphysical properties from 656	

simulated space-borne lidar measurements. CDOC were computed and consequently applied to 657	

the stand-alone 3β+2α lidar inversion. The same color-code scheme as for Table 7 has been 658	

applied, and also the same ranges of absorption. The results are presented for the four different 659	

ranges of random errors. 660	

     [Insert Table 9 here] 661	

Table 9 reveals The ability to obtain reliable aerosol microphysical parameters for 662	

different ranges of mi is the largest improvement resulting from the use of CDOC in the space-663	

borne simulations compared with the results discussed in Whiteman et al., (2018) where by 664	

default all retrievals operated with mi,max = 0.01 and with no limitations in mr. Moreover, the use 665	

of CDOC has particularly allowed the retrievals of aerosol refractive index and SSA, while also 666	

improving the general quality of the retrieval of bulk parameters (yellows becoming greens and 667	

reds becoming yellows). 668	

For random errors between 0-15% most retrieved parameters are within the uncertainties 669	

allowed as most of them fall within the 'green' area. The only exception is SSA at 1064 nm 670	

which clearly fails. SSA retrievals at 355 and at 532 nm have significant uncertainties for 671	

medium absorption but still fall within the desired range of uncertainty. This increase in 672	

uncertainty may be due to the difficulty of associating GEOS data with fine mode predominance 673	

or mixture of modes. For uncertainties in the input optical data between 15-20 % the deviation of 674	

the retrieved parameters from the reference increase but still remain within the desired range of 675	

uncertainty except for SSA(355) for low absorbing case and SSA1064 in general. For 676	

uncertainties greater than 20%, the failure rate of the retrievals generally increases considerably 677	

with the appearance of many red-coded cells and a larger fraction of yellow-coded cells. The 678	

most sensitive retrieved parameters are reff, mr and SSA. Degradation of retrievals is more 679	

evident as uncertainties in the optical data increase. Such degradations are associated with 680	

incorrect selection of constraints that yields to unrealistic retrievals as illustrated in Section 3.1. 681	
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Therefore, we conclude that retrievals of space-borne simulations are not feasible for cases when 682	

random uncertainties in the input optical data are above 20%. 683	

  684	

4.-Discussions,	Summary	and	Conclusions 685	

In this work we have focused on the use of case-dependent optimized-constraints 686	

(CDOC) in the stand-alone 3β+2α lidar inversion. The determination of these constraints from 687	

3β+2α is possible through the analysis of the spectral dependencies of extinction-to-backscatter 688	

ratios (LR) and of the extinction Angstrom exponents. Such computations have been discussed in 689	

detail in previous publications and are critical for the retrieval of aerosol refractive index and 690	

single scattering albedo (Perez-Ramirez et al., 2019).  691	

Different aerosol and molecular fields generated by the GEOS model have been used 692	

here to evaluate the use of CDOC. Our analyses reveal that for cases highly affected by 693	

hygroscopic growth the estimation of CDOC cannot be done accurately. We can argue that the 694	

GOCART size distributions for hygroscopic growth are not fully realistic considering that 695	

AERONET retrievals indicate that the size distributions affected by hygroscopic growth 696	

usually possess a larger width and show a change in radius when compared with dry cases 697	

(e.g. Schafer et al., 2008). Also, the cut-off established in GOCART where, for fine mode 698	

case s(sulphate and carbonaceous species), there are no particles larger than 0.5 µm is not 699	

fully consistent with the long-term AERONET database which shows the frequent occurrence 700	

of a remnant coarse mode even for fine mode dominated cases (e.g. Dubovik et al., 2002). 701	

Actually, the estimation of different aerosol species from remote sensing measurements using 702	

the Generalized Retrieval of Atmospheric and Surface Properties (GRASP – Dubovik et al., 703	

2014) always assumes a bimodal size distribution even for cases of fine mode predominance 704	

(Chen et al., 2018; Li et al., 2019). Furthermore, the estimation of CDOC fails for cases when 705	

pure black carbon is observed (percentage to total mass larger than 7%). Pure black carbon is 706	

observed in nature only from measurements in extremely polluted areas. Black carbon quickly 707	

interacts with gases through chemical reactions and with other particles through internal 708	

mixtures. Because these processes are not included in GOCART, we believe that the 709	

refractive index and size distributions for black carbon assumed in GOCART could be 710	
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unrealistic. We propose further investigations that incorporate typical size distributions and 711	

refractive indices observed by AERONET into GOGART in an attempt to reconcile 3β+2α 712	

lidar retrievals from space-borne simulations and modelling. 713	

 There are other aerosol size distributions observed in nature that are different from 714	

those assumed in the computation of CDOC. Among the most important of these are the tri-715	

modal size distributions typical of fog and cloud-induced aerosol observed from AERONET 716	

inversions (Eck et al., 2012). Such size distributions are bimodal in the fine mode 717	

(accumulation mode), with one mode in the range 0.4 - 0.5 µm and the other in the range 0.12 718	

- 0.25 µm. A relevant coarse mode centred at ~1.5 µm is also observed. We computed 3β+2α 719	

optical data for this tri-modal size distribution with refractive index m = 1.40 - 0.001i because 720	

these cases represent highly hygroscopic aerosols. Such optical data were used as input to the 721	

algorithm of Section 2.2 and the data were classified as mixture with low absorption. 722	

Therefore, if such tri-modal cases are present, the stand-alone 3β+2α lidar inversion would 723	

retrieve two modes instead. Furthermore, the retrieval of refractive index and SSA are still 724	

feasible because the typical tri-modal size distribution corresponds to very low absorption. 725	

 We have studied the sensitivity of the estimation of CDOC to uncertainties in the input 726	

optical data. A set of unimodal and bimodal size distributions was used to generate the 3β+2α 727	

measurements to which we added both systematic and random components. For random 728	

uncertainties we used a Monte Carlo technique and our results indicate that the estimation of 729	

CDOC is feasible for random uncertainties below ~ 20%, while for larger errors an incorrect 730	

assessment of the aerosol type occurs. On the other hand, we studied the effects of systematic 731	

errors by adding systematic biases to the input optical data. To isolate this effect, we fixed the 732	

CDOC so they did not vary with changing bias in the optical data. We found generally linear 733	

relationships between systematic biases and deviations in the retrieved parameters. For real (mr) 734	

and imaginary (mi) refractive indices such linear deviations are within the desired limits (± 0.05 735	

for mr and ±50% for mi) for biases up to ±30%. Nevertheless, differences can be above the 736	

desired limits for biases above ±15% if standard deviations are added to the retrievals. However, 737	

we found that retrievals of SSA are particularly sensitive to biases in β(355) for biases above 738	

±15%. For size distributions with fine and coarse mode predominance we also observed that 739	

biases in α(355) affect the retrievals of SSA, although this sensitivity is lower than that for 740	

β(355). Therefore, from all these sensitivity tests we can conclude that accurate retrievals by 741	
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CDOC are only feasible for random uncertainties in the input optical data below 20%, with the 742	

most sensitive optical input being β(355). This result complements the results of Perez-Ramirez 743	

et al., (2013) where it was determined that the most sensitive channels for the retrieval of bulk 744	

parameters were α(355) and α(532). 745	

 We have also analyzed the ability of a simulated space-borne multiwavelength lidar 746	

system to retrieve aerosol microphysical properties from the stand-alone 3β+2α lidar inversion 747	

when using CDOC. This study is a continuation of the work by Whiteman et al., (2018), who 748	

used the stand-alone 3β+2α lidar inversion but limited the maximum mi to 0.01. Our analyses 749	

have allowed the study of the capability of such simulated lidar system to retrieve refractive 750	

index and SSA in addition to the parameters studied in Whiteman et al, (2018). Different aerosol 751	

and molecular fields were generated by the GEOS model to obtain 3β+2α optical data, and these 752	

3β+2α measurements were then used as inputs to determine CDOC. Those constraints were then 753	

used in the regularization retrieval using the GEOS data to represent noise-free lidar simulations. 754	

Outputs from the retrievals were then compared with the original GEOS data and the differences 755	

analyzed. Our results revealed that such a lidar system is capable of retrieving all bulk 756	

parameters (reff, V, S and N), refractive index (both real and imaginary parts) and SSA at 355 and 757	

532 nm with differences within the desired limits independently of the range of absorption 758	

assumed (low absorption with mi< 0.01; medium absorption with 0.01<mi<0.03; high absorption 759	

with mi> 0.03). Further analyses consisted of using the GEOS aerosol and molecular profiles as 760	

input to a lidar simulator (Whiteman et al., 2001, 2010) so that realistic uncertainties (up to 50 761	

% in the optical data) could be assigned to the various measurements. These studies revealed that 762	

retrieval results using CDOC are still generally within desired limits for random uncertainties up 763	

to 20%. For larger errors we observed a degradation of the retrievals mainly in reff and mr and 764	

SSA, particularly for non-absorbing aerosols. 765	

 Our results from space-borne simulations are optimistic about the capabilities of such a 766	

system to retrieve aerosol microphysical properties, particularly absorption, using CDOC. But 767	

we must be cautious because CDOC are only feasible when uncertainties in the optical data are 768	

below 20%. That threshold in the uncertainty limits the yield of the satellite as stated by 769	

Whiteman et al., (2018), which claimed for the simulated space-borne lidar system used such 770	

uncertainties in optical data of 15% imply a yield of 15% for a 24-hour track satellite (assuming 771	

no clouds). Nevertheless, one-to-one comparisons for bulk parameters between the previous 772	
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study of Whiteman et al., (2018) and the results presented here imply reduced uncertainties in 773	

retrieved parameters from 35% to 25% for reff and from 30 to 25% in surface concentration. 774	

Volume concentration uncertainties are very similar between both studies. For mr, our study 775	

represents an advance by allowing retrievals within ±0.03 uncertainty, while the previous work 776	

only permitted such retrievals for fine mode predominance and low absorbing aerosol. But the 777	

largest achievement presented here is the possibility of retrieving mi and SSA from spaceborne 778	

simulations with reasonable uncertainties (±50% in mi and ±0.02, ±0.04 and ±0.05 in SSA for 779	

low, medium and high absorption, respectively), which has not been demonstrated in previous 780	

studies. 781	

In spite of the promising results presented here using CDOC we want to highlight the 782	

limitations of such a technique because it is not able to retrieve accurately aerosol microphysical 783	

properties in the presence either of highly hygroscopic aerosol or for the case of large differences 784	

in the refractive index between fine and coarse modes. Constraining the stand-alone 3β+2α lidar 785	

inversion for these specific cases cannot be done from 3β+2α measurements alone. The use of 786	

additional aerosol depolarization measurements could help for aerosol typing (e.g. Burton et al., 787	

2012, 2013, 2014, 2015) and establishing CDOC for these specific cases. Another current 788	

limitation in the use of CDOC is that it is not applicable to dust particles, whose scattering 789	

patterns demand the use of more advanced theories such as T-Matrix (e.g. Mischenko and 790	

Travis, 1994) and therefore the implementation in the retrievals of non-spherical kernel functions 791	

(e.g. Dubovik et al., 2006). Nevertheless, the use of non-spherical kernel functions alone in the 792	

stand-alone lidar inversion has been demonstrated as not sufficient for cases when dust particles 793	

are in a mixture with other aerosol types (e.g. Veselovskii et al., 2016, 2018), and additional 794	

aerosol depolarization measurements are also required. The use of aerosol depolarization 795	

measurements will be the focus of future work in lidar inversions and particularly in space-borne 796	

systems.  797	
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Figure 1: (a) Spectral dependence of extinction-to-backscattering ratio (LR) for fixed unimodal size 
distributions of rmodal = 0.075, 0.10, 0.14, and 0.18 µm, mi= 0, 0.005, 0.01, 0.025, 0.05 and 0.075 and 
fixed mr = 1.55. (b) Ratio of the extinction-to-backscattering ratios versus the Angström exponent of 
extinction (γα) or rmodal = 0.075, 0.10, 0.14, and 0.18 µm and mr = 1.35, 1.45, 1.55 and 1.65 and fixed mi = 
0.01. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

Figure 2: Deviations of the single scattering albedo (ΔSSA) at 355 nm as function of systematic bias in 
the optical data (Δε) for (a) low (b) medium and (c) high absorbing aerosol. ACE error limits for SSA are 
approximately of  ±0.02, ±0.04 and ±0.05 for low, medium and high absorption, respectively. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Deviations of the single scattering albedo (ΔSSA) at 355 nm as function of systematic bias in 
the optical data (Δε) for (a) low (b) medium and (c) high absorbing aerosol. ACE error limits for SSA are 
approximately of  ±0.02, ±0.04 and ±0.05 for low, medium and high absorption, respectively. 
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Figure 3: Deviations of the single scattering albedo (ΔSSA) as function of systematic bias in the optical 
data (Δε) for bimodal size distributions with different fine-to-coarse volume ratios (Vf/Vc) and imaginary 
refractive index mi(a)-(d) at 532 nm, (e)-(f)at 1064 nm. ACE error limits for SSA are approximately of  
±0.02, ±0.04 and ±0.05 for low, medium and high absorption, respectively. 

	

	

	

	

	

	

	

	

	



	

	

Figure 4: Deviations of the real and imaginary (Δmi) part of refractive indexas function of systematic 
bias in the optical data (Δε) for the case of fine mode predominance and medium absorption. Results 
represented are for medium absorption with mi = 0.025 for generating optical data. ACE error limits for 
mr are of and for mi ±0.01 for absorption.	
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Figure 4: Differences between GEOS imaginary refractive index (mi,GEOS) and optimized 

refractive index (mi,optimized) as function of mi,optimized. Dashed lines represent ±2.5mi,optimized which 

is the optimal range for the stand-alone lidar inversion. Different ranges of relative humidity 

(RH) in GEOS are considered (a) no limitation in RH, (b) RH < 90%, (c) RH < 75% and (d) RH < 

50%. 

 

 

 

 

 

 

 

 

 



	 CASE	OF	FINE	MODE	PREDOMINANCE	AND	LOW	ABSORPTION	AS	INPUT	
Uncertainties	
in	the	optical	

data	

Classified	as	Fine	Mode	Predominance	 Classified	as	Mixture	of	Modes	
Low	

Absorption	
Medium	

Absorption	
High	

Absorption	
Low	

Absorption	
Medium	

Absorption	
5	%	 95.6	%	 3.6	%	 0	%	 0.8	%	 0	%	
10	%	 78.9	%	 17.1	%	 0	%	 4.1	%	 0	%	
20	%	 65.5	%	 18.8	%	 0.8	%	 13.5	%	 0.2	%	
30	%	 58.7	%	 12.8	%	 1.3	%	 25.1	%	 2.2	%	
50	%	 54.5	%	 6.6	%		 1.6	%	 32.9	%	 4.5	%	

	 CASE	OF	FINE	MODE	PREDOMINANCE	AND	MEDIUM	ABSORPTION	AS	INPUT	
Uncertainties	
in	the	optical	

data	

Classified	as	Fine	Mode	Predominance	 Classified	as	Mixture	of	Modes	
Low	
Absorption	

Medium	
Absorption	

High	
Absorption	

Low	
Absorption	

Medium	
Absorption	

5	%	 7.1	%	 91.4	%	 0	%	 1.4	%	 0.2	%	
10	%	 10.8	%	 73.5	%	 1.2	%	 11.8	%	 2.8	%	
20	%	 5.3	%	 43.8	%	 12.5	%	 29.7	%	 8.8	%	
30	%	 2.2	%	 25.9	%	 17.3	%	 39.0	%	 15.7	%	
50	%	 0.9	%	 12.0	%	 17.3	%	 46.7	%	 23.3	%	

	 CASE	OF	FINE	MODE	PREDOMINANCE	AND	HIGH	ABSORPTION	AS	INPUT	
Uncertainties	
in	the	optical	

data	

Classified	as	Fine	Mode	Predominance	 Classified	as	Mixture	of	Modes	
Low	

Absorption	
Medium	

Absorption	
High	

Absorption	
Low	

Absorption	
Medium	

Absorption	
5	%	 0	%	 1.2	%	 97.8	%	 0	%	 0	%	
10	%	 0	%	 3.3	%	 95.5	%	 0.5	%	 0.7	%	
20	%	 0.2	%	 7.8	%	 78.8	%	 6.2	%	 6.9	%	
30	%	 0.4	%		 7.9	%	 61.4	%	 14.7	%	 15.7	%	
50	%	 0.5	%	 5.7	%	 41.4	%	 30.0	%	 22.8	%	

	 CASE	OF	MIXTURE	OF	MODES	AND	LOW	ABSORPTION	AS	INPUT	
Uncertainties	
in	the	optical	

data	

Classified	as	Fine	Mode	Predominance	 Classified	as	Mixture	of	Modes	
Low	

Absorption	
Medium	

Absorption	
High	

Absorption	
Low	

Absorption	
Medium	

Absorption	
5	%	 0.4	%	 0.0	%	 0.0	%	 80.3	%	 19.4	%	
10	%	 8.7	%	 0.2	%	 0.0	%	 70.8	%	 20.4	%	
20	%	 24.6	%	 0.5	%	 0.0	%	 55.4	%	 15.1	%	
30	%	 32.4	%	 5.5	%	 0.1	%	 48.1	%	 14.0	%	
50	%	 38.6	%	 4.8	%	 0.5	%	 44.0	%	 12.0	%	

	 CASE	OF	MIXTURE	OF	MODES	AND	MEDIUM	ABSORPTION	AS	INPUT	
Uncertainties	
in	the	optical	

data	

Classified	as	Fine	Mode	Predominance	 Classified	as	Mixture	of	Modes	
Low	

Absorption	
Medium	

Absorption	
High	

Absorption	
Low	

Absorption	
Medium	

Absorption	
5	%	 0.2	%	 0.0	%		 0.0	%	 8.9	%	 90.9	%	
10	%	 10.7	%	 0.1	%	 0.0	%		 24.7	%	 64.6	%	
20	%	 24.3	%	 4.3	%	 0.0	%	 32.4	%	 39.1	%	
30	%	 32.8	%	 5.5	%	 0.0	%	 34.9	%	 26.7	%	
50	%	 40.0	%	 3.8	%	 0.0	%	 35.4	%	 20.9	%	
Table	 1:	 Sensitivity	 of	 the	 computation	 of	 mi,optimized	 and	 the	 range	 of	 inversion	 for	 the	
computation	 of	 case-dependent	 optimized-constraints	 to	 random	 uncertainties	 in	 the	 input	
optical	data.	

	

	



	 Aerosol	Type	 SSA355	 SSA532	 SSA1064	 mr	 mi	

5	
%
	R
an

do
m
	

U
nc
er
ta
in
tie

s	 Fine	-	Low	Abs.	 0.01	 0.02	 0.04	 0.03	 0.001	
Fine	-	Medium	Abs.	 0.03	 0.03	 0.05	 0.04	 0.005	
Fine	-High	Abs	 0.03	 0.03	 0.04	 0.01	 0.011	
Mixture	-	Low	Abs.	 0.06	 0.03	 0.02	 0.05	 0.007	
Mixture	-	Medium	Abs	 0.07	 0.04	 0.03	 0.04	 0.006	

10
	%
	R
an

do
m
	

U
nc
er
ta
in
tie

s	 Fine	-	Low	Abs.	 0.02	 0.02	 0.06	 0.05	 0.005	
Fine	-	Medium	Abs.	 0.04	 0.04	 0.08	 0.05	 0.009	
Fine	-High	Abs	 0.04	 0.05	 0.07	 0.03	 0.011	
Mixture	-	Low	Abs.	 0.07	 0.03	 0.02	 0.06	 0.007	
Mixture	-	Medium	Abs	 0.08	 0.04	 0.04	 0.06	 0.010	

15
	%
	R
an

do
m
	

U
nc
er
ta
in
tie

s	 Fine	-	Low	Abs.	 0.02	 0.03	 0.08	 0.03	 0.005	
Fine	-	Medium	Abs.	 0.03	 0.04	 0.10	 0.04	 0.010	
Fine	-High	Abs	 0.04	 0.05	 0.12	 0.05	 0.015	
Mixture	-	Low	Abs.	 0.09	 0.03	 0.03	 0.03	 0.005	
Mixture	-	Medium	Abs	 0.12	 0.05	 0.04	 0.05	 0.010	

20
	%
	R
an

do
m
	

U
nc
er
ta
in
tie

s	 Fine	-	Low	Abs.	 0.10	 0.12	 0.21	 0.06	 0.007	
Fine	-	Medium	Abs.	 0.07	 0.08	 0.16	 0.06	 0.016	
Fine	-High	Abs	 0.21	 0.25	 0.49	 0.05	 0.022	
Mixture	-	Low	Abs.	 0.08	 0.07	 0.05	 0.07	 0.008	
Mixture	-	Medium	Abs	 0.10	 0.06	 0.06	 0.07	 0.012	

50
	%
	R
an

do
m
	

U
nc
er
ta
in
tie

s	

Fine	-	Low	Abs.	 0.25	 0.15	 0.44	 0.07	 0.010	
Fine	-	Medium	Abs.	 0.13	 0.15	 0.45	 0.08	 0.024	
Fine	-High	Abs	 0.52	 0.45	 0.12	 0.07	 0.029	
Mixture	-	Low	Abs.	 0.46	 0.24	 0.12	 0.08	 0.009	
Mixture	-	Medium	Abs	 0.40	 0.12	 0.10	 0.07	 0.011	

Table	2:Standard	deviations	in	spectral	single	scattering	albedo	(SSA)	and	in	complex	refractive	
index	(m	=	mr	-imi)	for	different	aeroso	types	after	running	the	3β+2α	lidar	inversion	with	case-
dependent	optimized-constraints	computed	with	random	uncertainties	in	the	optical	data.		

	



	 	 Standard	Deviations	of	ΔSSA	with	different	systematic	
uncertainties	in	the	input	optical	data	

	 	 5	%	 10	%	 15	%	 20	%	 30	%	

SSA(355)	
	

Low	 0.01-0.02	 0.01-0.03	 0.01	–	0.04	 0.01	–	0.05	 0.01	–	0.06	
Medium	 0.01-0.02	 0.01-0.03	 0.01	–	0.04	 0.01	–	0.05	 0.02	–	0.06	
High	 0.01-0.02	 0.01	–	0.04	 0.01	–	0.04	 0.01	–	0.05	 0.02	–	0.06	

	
SSA(532)	

Low	 0.01-0.02	 0.01-0.03	 0.01	–0.05	 0.01	–	0.06	 0.02	–	0.07	
Medium	 0.01	–	0.02	 0.01	–	0.04	 0.01	-0.05	 0.01	–	0.06	 0.02	–	0.08	
High	 0.01	-0.02	 0.01	–	0.05	 0.02	–	0.06	 0.02	-0.07	 0.03	–	0.08	

SSA(1064)	
	

Low	 0.01	-	0.02	 0.01	–	0.03	 0.01	–	0.03	 0.01	-	0.04	 0.01	–	0.05	
Medium	 0.01	–	0.03	 0.02-	0.05	 0.02	–	0.08	 0.02	–	0.10	 0.04	–	0.14	
High	 0.01	-	0.03	 0.02	–	0.04	 0.02	–	0.07	 0.03	–	0.08	 0.04	–	0.10	

Table 3: Standard deviations of the differences in single scattering albedo (SSA) when optical 
data are affected by systematic uncertainties. Results are for fine mode predominance cases and 
include different ranges of absorption. Minima are associated with the least sensitive optical 
data and maxima with the most sensitive optical data. 



 

 

 Standard Deviations of ΔSSA at different biases in the optical 
data 

5 % 10 % 15 % 20 % 30 % 

V
f/V

c =
 1

 

SSA(355) Low 0.01 0.01 0.01 0.01 0.01 
Medium 0.01 0.01 0.01 0.01-0.02 0.01-0.04 

SSA(532) Low 0.01 0.01 0.01 0.01 0.01 
Medium 0.01 0.01-0.02 0.01-0.02 0.01-0.02 0.01-0.04 

SSA(1064) Low 0.01 0.01 0.01-0.02 0.01-0.03 0.01-0.04 
Medium 0.01-0.02 0.01-0.02 0.01-0.05 0.01-0.07 0.01-0.10 

V
f/V

c =
 0

.2
 SSA(355) Low 0.01 0.01 0.01 0.01 0.01 

Medium 0.01 0.01 0.01-0.02 0.01-0.06 0.01-0.15 
SSA(532) Low 0.01 0.01 0.01 0.01 0.01-0.2 

Medium 0.01 0.01 0.01 0.01-0.02 0.01 – 0.02 
SSA(1064) Low 0.01 0.01 0.01 0.01-0.02 0.01-0.02 

Medium 0.01 0.01-0.02 0.01-0.03 0.01-0.04 0.01-0.7 
Table 4: Standard deviations of the differences in single scattering albedo (SSA) when data are 
affected by systematic uncertainties in the input optical data. Results are for different fractions 
between fine and coarse mode volumes (Vf/Vc) and for low (mi<0.01) and medium absorptions 
(0.01<mi<0.03). Minima are associated with the less sensitive optical data and maximum with 
the most sensitive optical data. 

 



 

	 	 Effective	
Radius	 Number	 Surface	 Volume	

α(355)	

Low	 -1.41 ± 0.16	 3.39 ± 0.21	 1.80 ± 0.05	 0.82± 0.06(p) /               
0.28 (n)  ±0.012	

Medium	 -0.85 ± 0.03(p)/  
-1.92 ±0.17 (n)	 3.17 ± 0.21	 1.85 ± 0.07	 0.77±0.05(p) /               

0.10 (n)  ± 0.17	
High	 -0.99 ± 0.03 (p)/  

-3.3 ± 0.3 (n)	 2.74 ± 0.21	 1.83 ± 0.07	 0.41± 0.10(p) /               
-0.46 (n)  ± 0.17	

α(532)	
Low	 1.33 ± 0.09	 -2.89 ± 0.26	 -0.94 ± 0.08	 0.31 ± 0.09	

Medium	 1.34 ± 0.06	 -2.56 ± 0.28	 -0.82 ± 0.08	 0.51 ± 0.06	
High	 1.54 ± 0.06	 -1.66± 0.28	 -0.59 ± 0.05	 0.98 ± 0.05	

β(355)	

Low	 -0.15 ± 0.01	 -0.13 ± 0.05 (p)/  
-0.97 ±0.09 (n)	 -0.47 ± 0.04	 -1.39 ± 0.04	

Medium	 0.05  0.01 -0.37 ± 0.07 (p)/  
-1.28 ±0.04 (n)	 -0.40 ± 0.03	 -0.36 ± 0.03 (p)/  

-0.99 ±0.09 (n)	
High	 0.15 ± 0.03	 -0.53 ± 0.03 (p)/  

-0.11 ±0.02 (n)	 0.01 ± 0.02	 0.15 ± 0.03	

β(532)	

Low	 0.27 ± 0.04	 1.88 ±0.16	 1.00 ± 0.02 (p)/  
0.34 ±0.04 (n)	

0.70 ± 0.02 (p)/  
-0.16 ±0.03 (n)	

Medium	 -0.24 ± 0.01	 1.87 ±0.21	 0.79 ± 0.02 (p)/  
0.16 ±0.04 (n)	

0.36 ± 0.04 (p)/  
-0.04 ±0.01 (n)	

High	 -0.12 ± 0.03	 1.22 ±0.07	 0.25 ± 0.03 (p)/  
0.18 ±0.01 (n)	 0.01 ± 0.04	

β(1064)	

Low	 0.21 ± 0.02	 -0.38 ± 0.06 (p)/  
-1.71 ±0.22 (n)	 -0.24 ± 0.02	 -0.03 ± 0.04	

Medium	 0.17 ± 0.02	 -0.43 ± 0.04 (p)/  
-1.96 ±0.40 (n)	 -0.31 ± 0.04	 0.58 ± 0.05	

High	 0.06 ± 0.03	 -0.04 ± 0.08 (p)/  
-0.41 ±0.04 (n)	 -0.27 ± 0.03	 0.28 ± 0.05	

Table 5: Percentage deviations in the aerosol bulk parameters as a function of systematic 
uncertainties in the optical data Δε. Particularly, the slopes 'a' of the linear fits Y = aX are 
presented, where ‘X’ is the systematic bias in the optical data and Y is the corresponding 
deviation in the microphysical properties. All these fits presented linear determination 
coefficient R2> 0.95.  For the cases when there is a difference in slope between positive and 
negativethe slopes relating to positive biases are indicated by (p), while those for negative 
biaseses are indicated by (n). 

 

 

 



 

rmodal (µm)  
 

σ (µm) LR355 (sr) LR532 (sr) γα  AEROSOL TYPE 

0.12 0.4 77.9 61.0 1.9 Fine and low absortion 
0.16 0.4 109.7 89.2 1.7 Fine and low absorption 

0.6 105.8 93.6 1.2 Fine and low absorption 
0.8 92.1 91.9 0.9 Fine and low absorption 

0.20 0.4 116.8 102.4 1.3 Fine and low absorption 
0.6 105.2 102.1 1.0 Fine and medium absorption 
0.8 87.8 93.4 0.7 Fine and medium absorption 

0.25 0.4 121.1 111.1 0.9 Mixture and medium absorption 
0.6 98.4 106.1 0.7 Mixture and Medium Absorption 
0.8 81.2 91.5 0.5 Mixture and medium absorption 

0.30 0.4 117.6 116.9 0.6 Fine and high absorption 
0.6 88.8 105.5 0.5 Mixture and medium absorption 
0.8 74.9 87.8 0.4 Mixture and medium absorption 

 

Table 6: Extinction-to-backscattering ratios (LR) and Angström exponent (γα) of extinction for 
different monomodal aerosol size distributions varying modal radius (rmodal) and width (σ). Also, 
is shown the aerosol type classification using the algorithm of section 3.1. 

 

 

 

 

 

 

 

 

 

 

 

 



 Relative Differences Absolute Differences 
reff V S mr mi SSA355 SSA532 SSA1064 

mi< 0.01 14.6 16.7 22.2 0.03 0.003 0.02 0.02 0.03 
0.01 < mi< 0.03 11.4 13.8 22.3 0.03 0.007 0.03 0.03 0.08 
mi> 0.03 16.4 8.7 22.8 0.02 0.02 0.04 0.04 0.08 
 

Table 7: Comparison of GEOS-5 aerosol bulk parameters, refractive index and spectral single 
scattering albedo and the values obtainted from the stand-alone 3β+2α lidar inversion with 
case-dependent optimized-constraints using GEOS-5 optical data as input. The values shown are 
root-mean-squares defined in Eqs. (2) and (3). In the column headings the range of absorption is 
also defined. 

 

 



 

 Error allowed per color-code 
Green Yellow Red 

Effective Radius ≤ 25 % 25 – 40% ≥ 40 % 
Volume Concentration ≤ 20 % 20 - 35% ≥ 35 % 
Surface Concentration ≤ 25 % 25 – 40% ≥ 40 % 
Real refractive Index ≤ 0.03 0.03 – 0.05 ≥ 0.05 
Imaginary 
refractive index 

mi< 0.01 ≤ 0.005 0.005-0.007 ≥ 0.007 
0.01 < mi< 0.03 ≤ 0.01 0.01-0.02 ≥ 0.02 
mi> 0.03 ≤0.015 0.015-0.03 ≥ 0.03 

Single Scattering 
albedo  

mi< 0.01 ≤0.02 0.03 ≥ 0.04 
0.01 < mi< 0.03 ≤ 0.03 0.04 ≥ 0.05 
mi> 0.03 ≤ 0.04 0.05 ≥ 0.06 

 

Table 8: Color schme used for Tables 7 and 9. Green indicates values fully consistent with 
uncertainties expected in retrieved parameters. Yellow indicates uncertainties marginally 
consistent and red indicates values above the allowed uncertainties. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 Relative 
Differences 

Absolute Differences 

reff V S mr mi SSA355 SSA532 SSA1054 
Error 
0-15% 

mi ≤ 0.01 
0.01< mi < 0.03 

mi ≥ 0.03 

25 15 25 0.03 0.005 0.02 0.03 0.03 
20 16 23 0.03 0.009 0.04 0.04 0.17 
30 15 20 0.03 0.012 0.04 0.04 0.11 

Error 
15-20% 

mi ≤ 0.01 
0.01< mi < 0.03 

mi ≥ 0.03 

25 35 27 0.04 0.002 0.04 0.03 0.06 
30 12 29 0.03 0.012 0.04 0.04 0.05 
20 19 30 0.04 0.018 0.05 0.05 0.07 

Error 
20-30% 

mi ≤ 0.01 
0.01< mi < 0.03 

mi ≥ 0.03 

56 63 27 0.05 0.002 0.05 0.04 0.04 
27 19 36 0.05 0.013 0.04 0.04 0.05 
36 15 30 0.06 0.016 0.05 0.05 0.1 

Error 
30-50% 

mi ≤ 0.01 
0.01< mi < 0.03 

mi ≥ 0.03 

72 74 27 0.09 0.004 0.07 0.06 0.04 
51 20 40 0.04 0.012 0.04 0.06 0.10 
60 14 29 0.09 0.025 0.06 0.06 0.18 

	

Table 9: Comparison of GEOS-5 aerosol bulk parameters, refractive index and spectral single 
scattering albedo and retrieved values from the stand-alone 3β+2α lidar inversion with case-
dependent optimized-constraints using simulated space-borne lidar measurements. Cases are 
again separated into different ranges of absorption and random uncertainties in the input optical 
data of the space-borne lidar system. 

	


