163 research outputs found

    Characterizing the diagnostic sensitivity and specificity of pain biomarkers in cattle using receiver operating characteristic curves

    Get PDF
    Biomarkers are used to assess pain and analgesic drug efficacy in livestock. However, often the diagnostic sensitivity and specificity of these biomarkers for different painful conditions over time have not been described. Receiver operating characteristic (ROC) curves are graphical plots that illustrate the diagnostic ability of a test as its discrimination threshold is varied. The objective of this analysis was to use area under the curve (AUC) values derived from ROC analysis to characterize the predictive value of potential pain biomarkers at specific time points following a painful stimulus. The biomarkers included in the analysis were plasma cortisol, salivary cortisol, hair cortisol, infrared thermography (IRT), mechanical nociceptive threshold (MNT), substance P, kinematic gait analysis, and a visual analog scale for pain. A total of 7,992 biomarker outcomes collected from 7 pain studies involving pain associated with castration, dehorning, lameness, and abdominal surgery were included in the analysis. Each study consisted of 3 treatments: uncontrolled pain (tissue damage), no pain (handled controls), and analgesic use (tissue damage, administered a nonsteroidal anti-inflammatory drug). Results comparing analgesic effects to uncontrolled pain consistently yielded AUC values >0.7 (95% confidence interval: 0.40 to 0.99) for plasma cortisol (time points: 1.5, 2, 3, 4, 6, and 8 h), hair cortisol (time point: 62 d), and IRT (time point: 72 h). Results comparing analgesic effects to uncontrolled pain consistently yielded AUC values <0.7 (95% confidence interval: 0.28 to 0.90) for salivary cortisol (6, 13, 20, 34, 48, and 62 d); MNT (6, 25, and 49 h); substance P (1, 2, 3, 4, 6, 8, 12, 18, 24, 48, 72, 96, 120, 144, 312, 480, 816, 1,152, and 1,488 h); kinematic gait analysis including area (8, 16, 48, 72, 96, and 120 h), force (8, 16, 24, 48, 72, 96, and 120 h), and pressure (8, 16, 24, 48, 72, 96, and 120 h); and a visual analog scale for pain (1, 2, 3, 4, 5, and 6 d). These results indicate that ROC analysis can be used to characterize the predictive value of pain biomarkers and provide new knowledge on the diagnostic accuracy of pain biomarkers within this data set. This analysis, using data from 7 studies, was a preliminary approach to identify biomarkers and collection time points that could inform additional analytical approaches or meta-analyses with larger sample sizes, which are needed to further validate these hypotheses and conclusions.info:eu-repo/semantics/publishedVersio

    A study to examine the relationship between uterine pathology and depletion of oxytetracycline in plasma and milk after intrauterine infusion

    Get PDF
    Citation: Gorden, P. J., Ydstie, J., Kleinhenz, M. D., Wulf, L. W., Gehring, R., Wang, C., & Coetzee, J. F. (2016). A study to examine the relationship between uterine pathology and depletion of oxytetracycline in plasma and milk after intrauterine infusion. Journal of Animal Science, 94, 30-30. doi:10.2527/msasas2016-065Metritis is a frequent problem in postpartum dairy cows. Intrauterine therapy with oxytetracycline (OTC) is often used to improve therapeutic outcomes, although efficacy data supporting this therapy are ambiguous. Several manuscripts describe the depletion of OTC from milk following intrauterine therapy. However, none of these studies have correlated uterine severity scores with milk OTC concentrations using highly sensitive detection systems. Our objective was to do this to test the hypothesis that cows with more severe uterine severity would have higher OTC residues in milk following intrauterine therapy. Thirty-two cows received a single treatment of 4 g of OTC via intrauterine infusion. Blood and milk samples were collected before intrauterine therapy and throughout the trial period of 96 h after infusion. Uterine severity scores were assigned at initiation of therapy and every 24 h throughout the remainder of the trial. Plasma and milk samples were analyzed for OTC concentrations using liquid chromatography coupled with mass spectrometry. Following treatment, OTC rapidly diffused from the uterus to plasma and from plasma to milk. Maximum concentration in plasma and milk occurred within 24 h following intrauterine infusion and 18 of the cows still had detectable levels of OTC in milk 4 d after intrauterine infusion. Greater uterine severity score at the initiation of treatment showed a significant positively correlation with higher milk OTC concentration at the second milking following treatment (R2 = 0.46, P = 0.01) but there was no correlation between initial uterine severity score and OTC concentration at the conclusion of the study (R2 = ?0.06, P = 0.75). In the United States, intrauterine administration of OTC is considered to be an extra-label therapy. The use of uterine severity score can be used to predict OTC concentration in the first day following therapy but should not be used as a predictor of OTC concentrations 96 h after treatment. Dairy producers should consult with their veterinarian to develop strategies that will prevent the presence of violative residues of OTC in bulk tank milk following intrauterine therapy

    Seed Tape Effects on Corn Emergence under Greenhouse Conditions

    Get PDF
    Seed tape has recently received attention as an alternative planting system for smallholder farmers in underdeveloped regions of South America, Africa, China, and India (Mateus, 2014). Seed companies are also developing seed-tape planting systems for germplasm evaluations (Deppermann et al., 2013). Although seed tape has been promoted as a method for ensuring uniform seed spacing and plant density of small-seeded flowers, herbs, and vegetables (Chancellor, 1969), little or no information is available on the use of seed tape for larger-seeded row crops and its effect on crop emergence. The objective of this study was to compare the emergence of corn seed embedded in tape to seeds planted by hand and to determine seed tape effects on rate of corn emergence

    Using a CO2 Surgical Laser for Piglet Castration to Reduce Pain and Inflammation, and to Improve Wound Healing

    Get PDF
    The objectives of this preliminary study were to determine the ability of a CO2 surgical laser to 1) reduce pain, 2) reduce inflammation, and 3) improve wound healing of piglets undergoing surgical castration. Two-day old male Yorkshire × Landrace piglets were used and randomly assigned to one of three treatments (n = 10 piglets/treatment group): surgical castration with the CO2 laser, surgical castration with a scalpel, or sham (uncastrated control). Piglets were video recorded in their pens for 1 h pre-procedure and from 0-2, 6-8, and at 24 h post-procedure for behavior scoring. Surgical site images were collected at baseline, 0, 8, 24, 48, 72, 96, 120, 144, and 168 h post-castration for wound healing assessment. Infrared thermography (IRT) images of the surgical site were also taken at baseline, 0, 0.5, 8, and 24 h post-procedure to assess inflammation. Finally, blood was collected from each piglet at baseline and 0.5 h post-castration to assess cortisol levels, prostaglandin E metabolite (PGEM), and pig-major acute phase protein (pig-MAP) concentration. Laser-castrated piglets displayed more pain behav­iors across the observation period than scalpel-castrated piglets (P = 0.049). Laser-castrated piglets also displayed significantly more agonistic behavior than both scalpel-castrated and sham piglets (P = 0.005 and P = 0.036, respectively); yet, laser-castrated piglets had significantly lower temperatures at the site of incision compared to scalpel-castrated piglets (P = 0.0211). There was no significant difference in wound healing or any of the blood parameters assessed between laser-castrated and scalpel-castrated piglets. There was evidence of thermal tissue damage on the scrotum of piglets that were castrated using the CO2 laser. This may have resulted in the unremarkable healing time and the increased pain behavior observed in this study. The surgical laser technique should be refined before conclusions can be made regarding the utility of a CO2 laser for piglet castration

    Development of Augmented Spark Impinging Igniter System for Methane Engines

    Get PDF
    The Lunar Cargo Transportation and Landing by Soft Touchdown (Lunar CATALYST) program is establishing multiple no-funds-exchanged Space Act Agreement (SAA) partnerships with U.S. private sector entities. The purpose of this program is to encourage the development of robotic lunar landers that can be integrated with U.S. commercial launch capabilities to deliver payloads to the lunar surface. NASA can share technology and expertise under the SAA for the benefit of the CATALYST partners. MSFC seeking to vacuum test Augmented Spark Impinging (ASI) igniter with methane and new exciter units to support CATALYST partners and NASA programs. ASI has previously been used/tested successfully at sea-level, with both O2/CH4 and O2/H2 propellants. Conventional ignition exciter systems historically experienced corona discharge issues in vacuum. Often utilized purging or atmospheric sealing on high voltage lead to remedy. Compact systems developed since PCAD could eliminate the high-voltage lead and directly couple the exciter to the spark igniter. MSFC developed Augmented Spark Impinging (ASI) igniter. Successfully used in several sea-level test programs. Plasma-assisted design. Portion of ox flow is used to generate hot plasma. Impinging flows downstream of plasma. Additional fuel flow down torch tube sleeve for cooling near stoichiometric torch flame. Testing done at NASA GRC Altitude Combustion Stand (ACS) facility 2000-lbf class facility with altitude simulation up to around 100,000 ft. (0.2 psia [10 Torr]) via nitrogen driven ejectors. Propellant conditioning systems can provide temperature control of LOX/CH4 up to test article
    corecore