868 research outputs found

    The Mauritian Truth and Justice Commission: legitimacy, political negotiation and the consequences of slavery

    Get PDF
    We examine the origins, processes and outcomes of the Mauritian Truth and Justice Commission’s (MTJC), examination of slavery, indentured labour and their contemporary effects. It has not been considered a success by any commentator. We therefore ask how far James L. Gibson’s application of legitimacy theory to ‘Truth Commissions’ has purchase in this context and whether it was cynically motivated. We use MTJC documentation, extensive interviews and newspaper reports to show that Gibson’s theory provides insight into MTJC outcomes while demonstrating that politico-economic power structures were crucial. Conversely, the MTJC does not sit easily in Van Zyl’s ‘cynical operation’ category

    Perceptions of employability among London's low-paid: 'self-determination' or ethnicity?

    Get PDF
    We investigate how ethnicity, gender and other characteristics affect low-paid workers’ perceptions of their employability in London’s labour market, examining ‘self-determination’, ethnic and dual labour market theories. We find that perceptions vary considerably, both between genders and ethnicities and in the extent to which they are ‘justified’ by human capital attributes. Optimism varies between genders and ethnic groups but individuals’ perceptions vary to an even greater extent within genders and ethnic groups. Hence, individual-level ‘self-determination’ explanations of these perceptions appear to have greatest explanatory power though ethnic theories also have utility

    Varieties of firm: complementarity and bounded diversity

    Get PDF
    This is a study of the nature of internal diversity within liberal and collaborative market economies. Based on large scale comparative survey data, we assess the extent to which specific clusters of practices are associated with specific varieties of capitalism. Given that recent literature has pointed to internal diversity within specific national contexts, we explore the nature of internal diversity within both liberal and collaborative market economies, and what makes each variety of capitalism distinct. We find that more than one cluster of practices is indeed likely to be encountered in a particular national context, but that this diversity was bounded: only a limited number of alternative paradigms are likely to emerge and persist. The survey findings not only shed light on the nature of this internal diversity, but also reveal the fact that liberal and collaborative markets remain distinct, with the rights accruing to employees being more deeply embedded in a wide cross section of firms within the latter

    Axl-EGFR receptor tyrosine kinase hetero-interaction provides EGFR with access to pro-invasive signalling in cancer cells

    Get PDF
    © The Author(s) 2016. Acquired resistance to conventional and targeted therapies is becoming a major hindrance in cancer management. It is increasingly clear that cancer cells are able to evolve and rewire canonical signalling pathways to their advantage, thus evading cell death and promoting cell invasion. The Axl receptor tyrosine kinase (RTK) has been shown to modulate acquired resistance to EGFR-targeted therapies in both breast and lung cancers. Glioblastoma multiforme (GBM) is a highly infiltrative and invasive form of brain tumour with little response to therapy. Both Axl and EGFR have been identified as major players in gliomagenesis and invasiveness. However, the mechanisms underlying a potential signalling crosstalk between EGFR and Axl RTKs are unknown. The purpose of this study was to investigate this novel and unconventional interaction among RTKs of different families in human GBM cells. With the use of western blotting, in vitro kinase activity, co-immunoprecipitation and bimolecular fluorescence complementation assays, we show that EGF stimulates activation of Axl kinase and that there is a hetero-interaction between the two RTKs. Through small interfering RNA knockdown and quantitative PCR screening, we identified distinct gene expression patterns in GBM cells that were specifically regulated by signalling from EGFR-EGFR, Axl-Axl and EGFR-Axl RTK parings. These included genes that promote invasion, which were activated only via the EGFR-Axl axis (MMP9), while EGFR-EGFR distinctly regulated the cell cycle and Axl-Axl regulated invasion. Our findings provide critical insights into the role of EGFR-Axl hetero-dimerisation in cancer cells and reveal regulation of cell invasion via Axl as a novel function of EGFR signalling

    PANINI : Pangenome Neighbour Identification for Bacterial Populations

    Get PDF
    The standard workhorse for genomic analysis of the evolution of bacterial populations is phylogenetic modelling of mutations in the core genome. However, a notable amount of information about evolutionary and transmission processes in diverse populations can be lost unless the accessory genome is also taken into consideration. Here, we introduce PANINI (Pangenome Neighbour Identification for Bacterial Populations), a computationally scalable method for identifying the neighbours for each isolate in a data set using unsupervised machine learning with stochastic neighbour embedding based on the t-SNE (t-distributed stochastic neighbour embedding) algorithm. PANINI is browser-based and integrates with the Microreact platform for rapid online visualization and exploration of both core and accessory genome evolutionary signals, together with relevant epidemiological, geographical, temporal and other metadata. Several case studies with single- and multi-clone pneumococcal populations are presented to demonstrate the ability to identify biologically important signals from gene content data. PANINI is available at http://panini.pathogen.watch and code at http://gitlab.com/cgps/panini.Peer reviewe

    Horizontal DNA transfer mechanisms of bacteria as weapons of intragenomic conflict

    Get PDF
    Horizontal DNA transfer (HDT) is a pervasive mechanism of diversification in many microbial species, but its primary evolutionary role remains controversial. Much recent research has emphasised the adaptive benefit of acquiring novel DNA, but here we argue instead that intragenomic conflict provides a coherent framework for understanding the evolutionary origins of HDT. To test this hypothesis, we developed a mathematical model of a clonally descended bacterial population undergoing HDT through transmission of mobile genetic elements (MGEs) and genetic transformation. Including the known bias of transformation toward the acquisition of shorter alleles into the model suggested it could be an effective means of counteracting the spread of MGEs. Both constitutive and transient competence for transformation were found to provide an effective defence against parasitic MGEs; transient competence could also be effective at permitting the selective spread of MGEs conferring a benefit on their host bacterium. The coordination of transient competence with cell-cell killing, observed in multiple species, was found to result in synergistic blocking of MGE transmission through releasing genomic DNA for homologous recombination while simultaneously reducing horizontal MGE spread by lowering the local cell density. To evaluate the feasibility of the functions suggested by the modelling analysis, we analysed genomic data from longitudinal sampling of individuals carrying Streptococcus pneumoniae. This revealed the frequent within-host coexistence of clonally descended cells that differed in their MGE infection status, a necessary condition for the proposed mechanism to operate. Additionally, we found multiple examples of MGEs inhibiting transformation through integrative disruption of genes encoding the competence machinery across many species, providing evidence of an ongoing "arms race." Reduced rates of transformation have also been observed in cells infected by MGEs that reduce the concentration of extracellular DNA through secretion of DNases. Simulations predicted that either mechanism of limiting transformation would benefit individual MGEs, but also that this tactic's effectiveness was limited by competition with other MGEs coinfecting the same cell. A further observed behaviour we hypothesised to reduce elimination by transformation was MGE activation when cells become competent. Our model predicted that this response was effective at counteracting transformation independently of competing MGEs. Therefore, this framework is able to explain both common properties of MGEs, and the seemingly paradoxical bacterial behaviours of transformation and cell-cell killing within clonally related populations, as the consequences of intragenomic conflict between self-replicating chromosomes and parasitic MGEs. The antagonistic nature of the different mechanisms of HDT over short timescales means their contribution to bacterial evolution is likely to be substantially greater than previously appreciated

    Union renewal in historical perspective

    Get PDF
    This article revisits contemporary union renewal/revival debates through comparison with the late 1930s resurgence of trade unionism in the UK’s engineering industry. It is argued that the 1930s union renewal arose from more favourable contextual conditions than those currently obtaining. It was led by political activists, with better-articulated organisation and greater resonance in the working class than their contemporary counterparts, and who were assisted by state policy and pro-worker forces. Conclusions are drawn in relation to current debates

    Post-vaccine epidemiology of serotype 3 pneumococci identifies transformation inhibition through prophage-driven alteration of a non-coding RNA

    Get PDF
    Background: The respiratory pathogen Streptococcus pneumoniae (the pneumococcus) is a genetically diverse bacterium associated with over 101 immunologically distinct polysaccharide capsules (serotypes). Polysaccharide conjugate vaccines (PCVs) have successfully eliminated multiple targeted serotypes, yet the mucoid serotype 3 has persisted despite its inclusion in PCV13. This capsule type is predominantly associated with a single globally disseminated strain, GPSC12 (clonal complex 180).Methods: A genomic epidemiology study combined previous surveillance datasets of serotype 3 pneumococci to analyse the population structure, dynamics, and differences in rates of diversification within GPSC12 during the period of PCV introductions. Transcriptomic analyses, whole genome sequencing, mutagenesis, and electron microscopy were used to characterise the phenotypic impact of loci hypothesised to affect this strain's evolution.Results: GPSC12 was split into clades by a genomic analysis. Clade I, the most common, rarely underwent transformation, but was typically infected with the prophage phi OXC141. Prior to the introduction of PCV13, this Glade's composition shifted towards a phi OXC141-negative subpopulation in a systematically sampled UK collection. In the post-PCV13 era, more rapidly recombining non-Clade I isolates, also phi OXC141-negative, have risen in prevalence. The low in vitro transformation efficiency of a Clade I isolate could not be fully explained by the similar to 100-fold reduction attributable to the serotype 3 capsule. Accordingly, prophage phi OXC141 was found to modify csRNA3, a non-coding RNA that inhibits the induction of transformation. This alteration was identified in -30% of all pneumococci and was particularly common in the unusually clonal serotype 1 GPSC2 strain. RNA-seq and quantitative reverse transcriptase PCR experiments using a genetically tractable pneumococcus demonstrated the altered csRNA3 was more effective at inhibiting production of the competence-stimulating peptide pheromone. This resulted in a reduction in the induction of competence for transformation.Conclusion: This interference with the quorum sensing needed to induce competence reduces the risk of the prophage being deleted by homologous recombination. Hence the selfish prophage-driven alteration of a regulatory RNA limits cell-cell communication and horizontal gene transfer, complicating the interpretation of post-vaccine population dynamics

    SerpinB2 regulates stromal remodelling and local invasion in pancreatic cancer

    Get PDF
    Pancreatic cancer has a devastating prognosis, with an overall 5-year survival rate of ~8%, restricted treatment options and characteristic molecular heterogeneity. SerpinB2 expression, particularly in the stromal compartment, is associated with reduced metastasis and prolonged survival in pancreatic ductal adenocarcinoma (PDAC) and our genomic analysis revealed that SERPINB2 is frequently deleted in PDAC. We show that SerpinB2 is required by stromal cells for normal collagen remodelling in vitro, regulating fibroblast interaction and engagement with collagen in the contracting matrix. In a pancreatic cancer allograft model, co-injection of PDAC cancer cells and SerpinB2(-/-) mouse embryonic fibroblasts (MEFs) resulted in increased tumour growth, aberrant remodelling of the extracellular matrix (ECM) and increased local invasion from the primary tumour. These tumours also displayed elevated proteolytic activity of the primary biochemical target of SerpinB2-urokinase plasminogen activator (uPA). In a large cohort of patients with resected PDAC, we show that increasing uPA mRNA expression was significantly associated with poorer survival following pancreatectomy. This study establishes a novel role for SerpinB2 in the stromal compartment in PDAC invasion through regulation of stromal remodelling and highlights the SerpinB2/uPA axis for further investigation as a potential therapeutic target in pancreatic cancer

    Genomic insights into the rapid emergence and evolution of MDR in Staphylococcus pseudintermedius.

    Get PDF
    OBJECTIVES: MDR methicillin-resistant Staphylococcus pseudintermedius (MRSP) strains have emerged rapidly as major canine pathogens and present serious treatment issues and concerns to public health due to their, albeit low, zoonotic potential. A further understanding of the genetics of resistance arising from a broadly susceptible background of S. pseudintermedius is needed. METHODS: We sequenced the genomes of 12 S. pseudintermedius isolates of varied STs and resistance phenotypes. RESULTS: Nine distinct clonal lineages had acquired either staphylococcal cassette chromosome (SCC) mec elements and/or Tn5405-like elements carrying up to five resistance genes [aphA3, sat, aadE, erm(B), dfrG] to generate MRSP, MDR methicillin-susceptible S. pseudintermedius and MDR MRSP populations. The most successful and clinically problematic MDR MRSP clones, ST68 SCCmecV(T) and ST71 SCCmecII-III, have further accumulated mutations in gyrA and grlA conferring resistance to fluoroquinolones. The carriage of additional mobile genetic elements (MGEs) was highly variable, suggesting that horizontal gene transfer is frequent in S. pseudintermedius populations. CONCLUSIONS: Importantly, the data suggest that MDR MRSP evolved rapidly by the acquisition of a very limited number of MGEs and mutations, and that the use of many classes of antimicrobials may co-select for the spread and emergence of MDR and XDR strains. Antimicrobial stewardship will need to be comprehensive, encompassing human medicine and veterinary disciplines to successfully preserve antimicrobial efficacy
    • …
    corecore