105 research outputs found

    The Jumonji-C oxygenase JMJD7 catalyzes (3S)-lysyl hydroxylation of TRAFAC GTPases

    Get PDF
    Biochemical, structural and cellular studies reveal Jumonji-C (JmjC) domain-containing 7 (JMJD7) to be a 2-oxoglutarate (2OG)-dependent oxygenase that catalyzes (3S)-lysyl hydroxylation. Crystallographic analyses reveal JMJD7 to be more closely related to the JmjC hydroxylases than to the JmjC demethylases. Biophysical and mutation studies show that JMJD7 has a unique dimerization mode, with interactions between monomers involving both N- and C-terminal regions and disulfide bond formation. A proteomic approach identifies two related members of the translation factor (TRAFAC) family of GTPases, developmentally regulated GTP-binding proteins 1 and 2 (DRG1/2), as activity-dependent JMJD7 interactors. Mass spectrometric analyses demonstrate that JMJD7 catalyzes Fe(ii)- and 2OG-dependent hydroxylation of a highly conserved lysine residue in DRG1/2; amino-acid analyses reveal that JMJD7 catalyzes (3S)-lysyl hydroxylation. The functional assignment of JMJD7 will enable future studies to define the role of DRG hydroxylation in cell growth and disease.Fil: Markolovic, Suzana. University of Oxford; Reino UnidoFil: Zhuang, Qinqin. University Of Birmingham; Reino UnidoFil: Wilkins, Sarah E.. University of Oxford; Reino UnidoFil: Eaton, Charlotte D.. University Of Birmingham; Reino UnidoFil: Abboud, Martine I.. University of Oxford; Reino UnidoFil: Katz, Maximiliano Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: McNeil, Helen E.. University Of Birmingham; Reino UnidoFil: Leśniak, Robert K.. University of Oxford; Reino UnidoFil: Hall, Charlotte. University Of Birmingham; Reino UnidoFil: Struwe, Weston B.. University of Oxford; Reino UnidoFil: Konietzny, Rebecca. University of Oxford; Reino UnidoFil: Davis, Simon. University of Oxford; Reino UnidoFil: Yang, Ming. The Francis Crick Institute; Reino Unido. University of Oxford; Reino UnidoFil: Ge, Wei. University of Oxford; Reino UnidoFil: Benesch, Justin L. P.. University of Oxford; Reino UnidoFil: Kessler, Benedikt M.. University of Oxford; Reino UnidoFil: Ratcliffe, Peter J.. University of Oxford; Reino Unido. The Francis Crick Institute; Reino UnidoFil: Cockman, Matthew E.. The Francis Crick Institute; Reino Unido. University of Oxford; Reino UnidoFil: Fischer, Roman. University of Oxford; Reino UnidoFil: Wappner, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Chowdhury, Rasheduzzaman. University of Stanford; Estados Unidos. University of Oxford; Reino UnidoFil: Coleman, Mathew L.. University Of Birmingham; Reino UnidoFil: Schofield, Christopher J.. University of Oxford; Reino Unid

    Cytoplasmic location of factor-inhibiting hypoxia-inducible factor is associated with an enhanced hypoxic response and a shorter survival in invasive breast cancer

    Get PDF
    INTRODUCTION: Hypoxia-inducible factor (HIF)-1alpha levels in invasive breast carcinoma have been shown to be an adverse prognostic indicator. Cellular HIF-1alpha activity is regulated by factor-inhibiting hypoxia-inducible factor 1 (FIH-1). In hypoxia, FIH-1 hydroxylation of Asn803 within the C-terminal transactivation domain does not occur and HIF-1alpha forms a fully active transcriptional complex. The present study investigates the role of FIH-1 in invasive breast carcinoma and its correlation with hypoxia. METHODS: Microarrayed tissue cores from 295 invasive carcinomas were stained for FIH-1, for HIF-1alpha and for carbonic anhydrase 9. FIH-1 expression was correlated with standard clinicopathological parameters and with the expression of the surrogate hypoxic markers HIF-1alpha and carbonic anhydrase 9. RESULTS: FIH-1 was positive in 239/295 (81%) tumours, 42/295 (14%) exclusively in the nucleus and 54/295 (18%) exclusively in the cytoplasm. Exclusive nuclear FIH-1 expression was significantly inversely associated with tumour grade (P = 0.02) and risk of recurrence (P = 0.04), whereas exclusive cytoplasmic FIH-1 was significantly positively associated with tumour grade (P = 0.004) and carbonic anhydrase 9 expression (P = 0.02). Patients with tumours that excluded FIH-1 from the nucleus had a significantly shorter survival compared with those with exclusive nuclear expression (P = 0.02). Cytoplasmic FIH-1 expression was also an independent poor prognostic factor for disease-free survival. CONCLUSION: FIH-1 is widely expressed in invasive breast carcinoma. As with other HIF regulators, its association between cellular compartmentalization and the hypoxic response and survival suggests that tumour regulation of FIH-1 is an additional important mechanism for HIF pathway activation

    Hypoxia-inducible Factor-1 Activation in Nonhypoxic Conditions: The Essential Role of Mitochondrial-derived Reactive Oxygen Species

    Get PDF
    Hypoxia-inducible factor-1 (HIF-1) is a key transcription factor for responses to low oxygen. Here we report that the generation of mitochondrial reactive oxygen species are essential for regulating HIF-1 in normal oxygen conditions in the vasculature

    Effects of preset sequential administrations of sunitinib and everolimus on tumour differentiation in Caki-1 renal cell carcinoma.

    Get PDF
    BACKGROUND: Sunitinib (VEGFR/PDGFR inhibitor) and everolimus (mTOR inhibitor) are both approved for advanced renal cell carcinoma (RCC) as first-line and second-line therapy, respectively. In the clinics, sunitinib treatment is limited by the emergence of acquired resistance, leading to a switch to second-line treatment at progression, often based on everolimus. No data have been yet generated on programmed alternating sequential strategies combining alternative use of sunitinib and everolimus before progression. Such strategy is expected to delay the emergence of acquired resistance and improve tumour control. The aim of our study was to assess the changes in tumours induced by three different sequences administration of sunitinib and everolimus. METHODS: In human Caki-1 RCC xenograft model, sunitinib was alternated with everolimus every week, every 2 weeks, or every 3 weeks. Effects on necrosis, hypoxia, angiogenesis, and EMT status were assessed by immunohisochemistry and immunofluorescence. RESULTS: Sunitinib and everolimus programmed sequential regimens before progression yielded longer median time to tumour progression than sunitinib and everolimus monotherapies. In each group of treatment, tumour growth control was associated with inhibition of mTOR pathway and changes from a mesenchymal towards an epithelial phenotype, with a decrease in vimentin and an increase in E-cadherin expression. The sequential combinations of these two agents in a RCC mouse clinical trial induced antiangiogenic effects, leading to tumour necrosis. CONCLUSIONS: In summary, our study showed that alternate sequence of sunitinib and everolimus mitigated the development of mesenchymal phenotype compared with sunitinib as single agent

    Target gene selectivity of hypoxia-inducible factor-α in renal cancer cells is conveyed by post-DNA-binding mechanisms

    Get PDF
    Inactivation of the von Hippel–Lindau tumour suppressor in renal cell carcinoma (RCC) leads to failure of proteolytic regulation of the α subunits of hypoxia-inducible factor (HIF), constitutive upregulation of the HIF complex, and overexpression of HIF target genes. However, recent studies have indicated that in this setting, upregulation of the closely related HIF-α isoforms, HIF-1α and HIF-2α, have contrasting effects on tumour growth, and activate distinct sets of target genes. To pursue these findings, we sought to elucidate the mechanisms underlying target gene selectivity for HIF-1α and HIF-2α. Using chromatin immunoprecipitation to probe binding to hypoxia response elements in vivo, and expression of chimaeric molecules bearing reciprocal domain exchanges between HIF-1α and HIF-2α molecules, we show that selective activation of HIF-α target gene expression is not dependent on selective DNA-binding at the target locus, but depends on non-equivalent C-terminal portions of these molecules. Our data indicate that post-DNA binding mechanisms that are dissimilar for HIF-1α and HIF-2α determine target gene selectivity in RCC cells

    Factor inhibiting HIF (FIH-1) promotes renal cancer cell survival by protecting cells from HIF-1α-mediated apoptosis.

    Get PDF
    BACKGROUND: Clear cell renal cell carcinoma (CCRCC) is the commonest form of kidney cancer. Up to 91% have biallelic inactivation of VHL, resulting in stabilisation of HIF-α subunits. Factor inhibiting HIF-1 is an enzyme that hydroxylates HIF-α subunits and prevents recruitment of the co-activator CBP/P300. An important question is whether FIH-1 controls HIF activity in CCRCC. METHODS: Human VHL defective CCRCC lines RCC10, RCC4 and 786-O were used to determine the role of FIH-1 in modulating HIF activity, using small interfering RNA knockdown, retroviral gene expression, quantitative RT-PCR, western blot analysis, Annexin V and propidium iodide labelling. RESULTS: Although it was previously suggested that FIH-1 is suppressed in CCRCC, we found that FIH-1 mRNA and protein are actually present at similar levels in CCRCC and normal kidney. The FIH-1 inhibition or knockdown in the VHL defective CCRCC lines RCC10 and RCC4 (which express both HIF-1α and HIF-2α) resulted in increased expression of HIF target genes. In the 786-O CCRCC cell line, which expresses only HIF-2α, FIH-1 attenuation showed no significant effect on expression of these genes; introduction of HIF-1α resulted in sensitivity of HIF targets to FIH-1 knockdown. In RCC4 and RCC10, knockdown of FIH-1 increased apoptosis. Suppressing HIF-1α expression in RCC10 prevented FIH-1 knockdown from increasing apoptosis. CONCLUSION: Our results support a unifying model in which HIF-1α has a tumour suppressor action in CCRCC, held in check by FIH-1. Inhibiting FIH-1 in CCRCC could be used to bias the HIF response towards HIF-1α and decrease tumour cell viability

    Absence of VHL gene alteration and high VEGF expression are associated with tumour aggressiveness and poor survival of renal-cell carcinoma

    Get PDF
    International audienceBACKGROUND: The von Hippel-Lindau gene (VHL) alteration, a common event in sporadic clear-cell renal-cell carcinoma (CCRCC), leads to highly vascularised tumours. Vascular endothelial growth factor (VEGF) is the major factor involved in angiogenesis, but the prognostic significance of both VHL inactivation and VEGF expression remain controversial. The aims of this study were to analyse the relationship between VHL genetic and epigenetic alterations, VHL expression and VEGF tumour or plasma expression, and to analyse their respective prognostic value in patients with CCRCC. METHODS: A total of 102 patients with CCRCC were prospectively analysed. Alterations in VHL were determined by sequencing, Multiplex Ligation-dependent Probe Amplification (MLPA) and methylation-specific MLPA. Expression of pVHL and VEGF was determined by immunohistochemistry. Plasma VEGF was measured by enzyme-linked immunosorbent assay (ELISA). RESULTS: VHL mutation, deletion and promoter methylation were identified in 70, 76 and 14 cases, respectively. Overall, at least one VHL-gene alteration occurred in 91 cases (89.2%). Both VEGF tumour and plasma expression appeared to be decreased in case of VHL alteration. Median progression-free survival and CCRCC-specific survival were significantly reduced in patients with wild-type VHL or altered VHL and high VEGF expression, which, therefore, represent two markers of tumour aggressiveness in CCRCC. CONCLUSION: Stratifying CCRCCs according to VHL and VEGF status may help tailor therapeutic strategy

    Gastrointestinal Hyperplasia with Altered Expression of DNA Polymerase β

    Get PDF
    Background: Altered expression of DNA polymerase β (Pol β) has been documented in a large percentage of human tumors. However, tumor prevalence or predisposition resulting from Pol β over-expression has not yet been evaluated in a mouse model. Methodology/Principal Findings: We have recently developed a novel transgenic mouse model that over-expresses Pol β. These mice present with an elevated incidence of spontaneous histologic lesions, including cataracts, hyperplasia of Brunner's gland and mucosal hyperplasia in the duodenum. In addition, osteogenic tumors in mice tails, such as osteoma and osteosarcoma were detected. This is the first report of elevated tumor incidence in a mouse model of Pol β over-expression. These findings prompted an evaluation of human gastrointestinal tumors with regard to Pol β expression. We observed elevated expression of Pol β in stomach adenomas and thyroid follicular carcinomas, but reduced Pol β expression in esophageal adenocarcinomas and squamous carcinomas. Conclusions/Significance: These data support the hypothesis that balanced and proficient base excision repair protein expression and base excision repair capacity is required for genome stability and protection from hyperplasia and tumor formation

    Abnormalities in Oxygen Sensing Define Early and Late Onset Preeclampsia as Distinct Pathologies

    Get PDF
    BACKGROUND: The pathogenesis of preeclampsia, a serious pregnancy disorder, is still elusive and its treatment empirical. Hypoxia Inducible Factor-1 (HIF-1) is crucial for placental development and early detection of aberrant regulatory mechanisms of HIF-1 could impact on the diagnosis and management of preeclampsia. HIF-1α stability is controlled by O(2)-sensing enzymes including prolyl hydroxylases (PHDs), Factor Inhibiting HIF (FIH), and E3 ligases Seven In Absentia Homologues (SIAHs). Here we investigated early- (E-PE) and late-onset (L-PE) human preeclamptic placentae and their ability to sense changes in oxygen tension occurring during normal placental development. METHODS AND FINDINGS: Expression of PHD2, FIH and SIAHs were significantly down-regulated in E-PE compared to control and L-PE placentae, while HIF-1α levels were increased. PHD3 expression was increased due to decreased FIH levels as demonstrated by siRNA FIH knockdown experiments in trophoblastic JEG-3 cells. E-PE tissues had markedly diminished HIF-1α hydroxylation at proline residues 402 and 564 as assessed with monoclonal antibodies raised against hydroxylated HIF-1α P402 or P564, suggesting regulation by PHD2 and not PHD3. Culturing villous explants under varying oxygen tensions revealed that E-PE, but not L-PE, placentae were unable to regulate HIF-1α levels because PHD2, FIH and SIAHs did not sense a hypoxic environment. CONCLUSION: Disruption of oxygen sensing in E-PE vs. L-PE and control placentae is the first molecular evidence of the existence of two distinct preeclamptic diseases and the unique molecular O(2)-sensing signature of E-PE placentae may be of diagnostic value when assessing high risk pregnancies and their severity
    corecore