
Factor inhibiting HIF (FIH-1) promotes renal cancer cell survival
by protecting cells from HIF-1a-mediated apoptosis
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BACKGROUND: Clear cell renal cell carcinoma (CCRCC) is the commonest form of kidney cancer. Up to 91% have biallelic inactivation
of VHL, resulting in stabilisation of HIF-a subunits. Factor inhibiting HIF-1 is an enzyme that hydroxylates HIF-a subunits and prevents
recruitment of the co-activator CBP/P300. An important question is whether FIH-1 controls HIF activity in CCRCC.
METHODS: Human VHL defective CCRCC lines RCC10, RCC4 and 786–O were used to determine the role of FIH-1 in modulating
HIF activity, using small interfering RNA knockdown, retroviral gene expression, quantitative RT–PCR, western blot analysis, Annexin
V and propidium iodide labelling.
RESULTS: Although it was previously suggested that FIH-1 is suppressed in CCRCC, we found that FIH-1 mRNA and protein are
actually present at similar levels in CCRCC and normal kidney. The FIH-1 inhibition or knockdown in the VHL defective CCRCC lines
RCC10 and RCC4 (which express both HIF-1a and HIF-2a) resulted in increased expression of HIF target genes. In the 786-O
CCRCC cell line, which expresses only HIF-2a, FIH-1 attenuation showed no significant effect on expression of these genes;
introduction of HIF-1a resulted in sensitivity of HIF targets to FIH-1 knockdown. In RCC4 and RCC10, knockdown of FIH-1 increased
apoptosis. Suppressing HIF-1a expression in RCC10 prevented FIH-1 knockdown from increasing apoptosis.
CONCLUSION: Our results support a unifying model in which HIF-1a has a tumour suppressor action in CCRCC, held in check by
FIH-1. Inhibiting FIH-1 in CCRCC could be used to bias the HIF response towards HIF-1a and decrease tumour cell viability.
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Clear cell renal cell carcinoma (CCRCC) often presents late and
remains a significant cause of morbidity and mortality. Recently
there have been advances in identifying signalling pathways
that are activated in CCRCC, and the introduction of treatments
targeting these pathways has shown useful activity in patients with
the disease (Linehan et al, 2009). At a genetic level, biallelic
inactivation of VHL occurs in the majority of CCRCC, and
also underlies the tumours that develop in families with von
Hippel– Lindau disease caused by a germline mutation in VHL.
Re-expression of VHL efficiently suppresses tumour growth of CCRCC
in xenograft assays, establishing that VHL acts as a gatekeeper
tumour suppressor gene in the renal epithelium (Iliopoulos et al,
1995). However, understanding of the mechanism(s) by which
VHL does this is challenging because it is a multifunctional protein
(Frew and Krek, 2008). The best characterised function of VHL is
its role as a negative regulator of hypoxia-inducible factor (HIF),
through oxygen-dependent degradation of the HIF-a subunit, of

which there are two isoforms HIF-1a and HIF-2a (Maxwell et al,
1999). Although it is likely that other actions of VHL contribute
to its tumour suppressor action in the kidney, activation of HIF
(and more specifically HIF-2a) has been shown to be necessary and
sufficient for growth of VHL defective CCRCC cells in xenograft
assays (Kondo et al, 2002, 2003). The HIF activation has a range of
effects, which could contribute to tumour progression, including
enhancing glucose uptake, and increasing expression of glycolytic
enzymes and angiogenic mediators (Semenza, 2007). When VHL
is present, HIF activation is dramatically downregulated in the
presence of oxygen through oxygen-dependent enzymatic hydro-
xylation of specific prolyl residues by the prolyl hydroxylase
domain (PHD) enzymes in the central part of HIF-a subunits,
which leads to capture by VHL and ubiquitylation (Epstein et al,
2001). In VHL defective cells, HIF-a subunits are stable in the
presence of oxygen (Maxwell et al, 1999). Studies in mice and
humans have established that VHL loss-of-function alone is not
sufficient for tumourigenesis (Mandriota et al, 2002; Rankin et al,
2006; Frew et al, 2008). The additional events that are required for
tumour development are incompletely understood, but there is
evolution from exclusive HIF-1a expression in normal renal
epithelium and very early lesions to a predominant or exclusive
HIF-2a response in tumours, which is likely to be important (Raval
et al, 2005).
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Co-activator recruitment by HIF-a subunits is regulated by
oxygen via FIH-1. This hydroxylates a conserved asparagine
residue (Asn 803 in human HIF-1a) within the C-terminal
transactivation domain (CTAD) of HIF-a, thereby preventing
binding of the co-factor p300 and inhibiting HIF transcriptional
activation (Freedman et al, 2002; Hewitson et al, 2002; Lando et al,
2002a, b; Elkins et al, 2003). The role of FIH-1 in regulating the
HIF response has been less extensively investigated than that
of the PHD enzymes and VHL, but it is established that attenuating
FIH-1 increases expression of HIF target genes across a wide range
of oxygen tensions (Stolze et al, 2004). Importantly, it has recently
been established that FIH-1 hydroxylates ankyrin repeats in
other proteins besides HIF-a subunits (Cockman et al, 2006;
Linke et al, 2007).

Here we investigate the role of FIH-1 in modulating HIF activity
in VHL defective CCRCC. Previous studies of two renal cancer cell
lines, A498 and 786-O, suggested that FIH-1 expression was
specifically repressed by a mechanism involving phosphatidylino-
sitol 3-kinase (PI3K) and the atypical protein kinase C, PKCz
(Datta et al, 2004; Li et al, 2007). Importantly, we found that FIH-1
is in fact present in CCRCC at similar levels to normal kidney.
Further, we show that FIH-1 modulates HIF activity in VHL
defective CCRCC lines that contain HIF-1a and HIF-2a, and that
inhibiting FIH-1 decreases expansion of these cells in culture and
increases apoptosis, in a HIF-1a-dependent manner.

MATERIALS AND METHODS

Cell culture, chemicals, and antibodies

Cell lines RCC10, RCC4 and 786-O, and RCC10 stable transfectants
with wild-type pVHL have been described previously (Maxwell
et al, 1999; Krieg et al, 2000). Cells were cultured in RPMI 1640
(Life Technologies, Gaithersburg, MD, USA) supplemented with
penicillin/streptomycin, glutamine, and 10% fetal bovine serum.
Cultures were incubated at 371C in humidified air with 5% CO2.

Dimethyloxalylglycine (DMOG) was purchased from Frontier
Scientific (Logan, UT, USA). For hypoxic experiments, cells were
exposed to 0.1 and 1% oxygen for the indicated times using either
a hypoxic workstation (INVIVO2 100, Ruskinn, Leeds, UK) or a
hypoxic incubator Galaxy R (Biotech, Palo Alto, CA, USA).

The antibodies used were as follows: FIH-1 (Novus biologicals,
Littleton, CO, USA), HIF-1a (clone 54; Transduction Labs,
Lexington, KY, USA), HIF-2a (p190b; Cancer Research
UK, London, UK), GLUT1 and b-actin (Abcam, Cambridge, UK),
a-tubulin (Sigma-Aldrich, Poole, UK), Pk-tag (AbD, Serotec, UK).

Clinical material

The study was approved by the Hammersmith and Queen
Charlotte’s and Chelsea Research Ethics Committee (2002/6486).
Following informed consent, samples of uninvolved kidney tissue
and tumour were snap frozen in the operating theatre and stored
at �801C.

Immunoblotting

Tissues and cells were homogenised in protein extraction buffer as
described (Wiesener et al, 1998). Immunoblots were visualised
with enhanced chemiluminescence (ECL) or ECL Plus (Amersham,
Arlington Heights, IL, USA).

Real-time reverse transcription-PCR

Total cellular RNA from cells and tissues was isolated using
RNA Bee (Biogenesis, Poole, UK), according to the manufac-
turer’s instructions. Total RNA (2 mg per 20 ml reaction) was
retrotranscribed using an avian myeloblastosis virus retro-

transcription kit (Roche, Indianapolis, IN, USA). PCR was carried
out using an Opticon 2 machine (MJ Research, Waltham, MA,
USA). Analysis of each experimental sample was in duplicate or
triplicate. All real-time reverse transcription-PCR (RT–PCR) data
are given as a value normalised to the level of b-actin expression in
the same retrotranscription. For tumour samples, values were
normalised to the level of 18S expression. The b-actin expression
was not significantly altered by hypoxia, or DMOG.
b-Actin, 18S, glucose transporter 1 (GLUT1), BCL2/adenovirus

E1B 19 kDa interacting protein 3 (BNIP3), factor inhibiting
hypoxia-inducible factor (FIH-1), PHD3 and vascular endothelial
growth factor (VEGF) mRNA were measured using SYBR Green
(ABgene, Epsom, UK) and the following primers:
b-Actin, 50-CCCAGAGCAAGAGAGG-30 (forward) and 50-GTC

CAGACGCAGGATG-30 (reverse); 18S, 50-CGCCGCTAGAGGT
GAAATTC-30 (forward) and 50-TTGGCAAATGCTTTCGCTC-30

(reverse); GLUT1, 50-TGGCATGGCGGGTTGT-30 (forward) and
50-CCAGGGTAGCTGCTCCAGC-30 (reverse); PHD3, 50-GATGCTG
AAGAAAGGGC-30 (forward) and 50-CTGGCAAAGAGAGTATC
TG-30 (reverse); VEGF, 50-TGCCAAGTGGTCCCAG-30 (forward)
and 50-GTGAGGTTTGATCCGC-30 (reverse); BNIP3, 50-GATATG
GGATTGGTCAAGTCGG-30 (forward) and 50-CGCTCGTGTTCCT
CATGCT-30 (reverse); FIH-1, 50-AAAATGTGGTTGGTTACGAA
ACAG-30 (forward) and 50-GACTCTATGTGATGCCACCAGTA
CA-30 (reverse).

Small interfering (si)RNA transfections

Sequences for siRNA targeting FIH-1 were generated using Target
Finder (Ambion Bioscience, Austin, TX, USA) and purchased from
Eurogentec (Southampton, UK). Transfections were performed
in p60 culture dishes using LipofectAMINE 2000 (Invitrogen,
San Diego, CA, USA) with siRNA oligos at a concentration of
50 nmol l�1. Cells were transfected as a pool, and after 15 –20 h,
were divided onto six-well dishes. Cells were analysed 2 days after
transfection.

Small interfering RNA oligo sequences were as follows: FIH #1:
F-50-AUGAGGAGCCUGUGGUGCUdTdT-30 R-50-AGCACCACAGG
CUCCUCAUdTdT-30; FIH #2: F-50-GAUGCUUGGAGAGGCCUUG
dTdT-30 R-50-CCAAGGCCUCUCCAAGCAUdTdT-30; HIF-1a: F-50-CU
GAUGACCAGCAACUUGAdTdT-30 R-50-UCAAGUUGCUGGUCA
UCAGdTdT-30; HIF-2a: F-50-CAGCAUCUUUGAUAGCAGUdTdT-30

R-50-ACUGCUAUCAAAGAUGCUGdTdT-30; Firefly Luciferase
(LUC): F-50-CGUACGCGGAAUACUUCGAdTdT-30 R-50-AAGCUA
AAGGUACACAAUUdTdT-30.

Lentiviral short hairpin RNA (shRNA) transfections

The RCC10 cells were plated at a density of 4� 104 per well in
24-well plates and cultured in complete media for 24 h. The
following day, fresh media, supplemented with 6 mg ml�1 poly-
brene (Sigma-Aldrich), were applied and the cells were transfected
with lentiviral particles targeting HIF-1a (Sigma-Aldrich, MISSION
shRNA, NM_001530, clone ID TRCN0000003810) or luciferase
(Sigma-Aldrich, vector ID SHC007V, F-50-CCGGCGCTGAGTA
CTTCGAAATGTCCTC-30 R-50-GAGGACATTTCGAAGTACTCAGC
GTTTTT30) at a multiplicity of infection of five. The following
day fresh medium was added and 48 h post infection complete
medium containing 2 mg ml�1 puromycin was applied to select for
transfected cells.

Infection of HIF and FIH-1 retroviral vectors

Viral supernatants were prepared by transfecting the Phoenix
packaging cell line (Orbigen, San Diego, CA, USA) using
LipofectAMINE 2000. After the initial transfection, Phoenix cells
were grown at 321C. The supernatant was collected and filtered
(0.45 mm), then supplemented with 0.25-volume fresh medium
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with 7.5 mg ml�1 polybrene (Sigma-Aldrich, Poole, UK), and added
to cells that had been plated the day before on p100 dishes at 30–
40% confluence. After 20 h, cells were washed, and fresh media
were added for 20 h before performing a second round of infection.

An active form of HIF-1a carrying the substitutions P402A and
P564A, which is resistant to hydroxylation by PHD enzymes, was
cloned into pBMNz-HIF1a-neo (Raval et al, 2005). Following
infection as described, 786-O cells were selected with G418.

Retroviral vectors of pFIH-1

The coding sequence for human FIH-1 with and without a C
terminal Pk tag (V5 epitope from paramyxovirus) was inserted
into pCMVR-Neo using standard manoeuvres. Following infection
with retroviruses, cells were selected with G418.

Cell proliferation and apoptosis assays

Cell culture expansion was measured over a period of 3 days by
MTT assay (3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium
bromide; Sigma-Aldrich). Cells were transfected as described
above and after 15–20 h, were plated at a density of 3� 103 cells
per well into a 24-well cell tissue culture plate. After 24, 48 and
72 h, 50 ml of 5 mg ml�1 MTT solution were added to the cell
cultures in 0.5 ml of medium. After 4 h, media were removed
and precipitated formazan crystals formed in viable cells were
solubilised with 200 ml of isopropanol-triton (0.1%). Product
formation was quantified by absorbance at 550 nm.

Cell culture expansion was also assessed by manual counting.
Transfected cells were plated at a density of 2� 104 cells per well
into a six-well tissue culture plate, or 1� 104 cells per well into a
24-well tissue culture plate and viable cells were counted using a
hemocytometer after trypan blue staining.

Apoptosis of siRNA-transfected cells was measured by the
Annexin-V-FITC Detection Kit I (BD Biosciences, Oxford, UK)
according to the manufacturer’s instructions. After staining, cells
were analysed on a Becton Dickinson FACS Caliber flow cytometer
with CellQuest software (BD Biosciences).

Apoptosis was also measured using the Cell Death Detection
ELISA Plus kit (Roche, Burgess Hill, UK). Cell pellets of transfected
cells were placed into 200ml of lysis buffer provided by the
manufacturer for 30 min and centrifuged. Aliquots of the super-
natant (20 ml) were used in an ELISA with anti-DNA and anti-
histone antibodies to detect the presence of cytoplasmic nucleo-
somes.

Statistical analysis

Data are presented as the mean (±s.e.m.) of three independent
experiments. ANOVA or Student’s t-test were used to evaluate
differences and the level of statistical significance is indicated

by the use of asterisks in the figures: *Po0.05, **Po0.01,
***Po0.001.

RESULTS

Factor inhibiting HIF-1 is expressed in renal cancer

The expression of FIH-1 in CCRCC has not been directly examined
to our knowledge. We therefore analysed expression of FIH-1 in
CCRCC samples and adjacent uninvolved kidney samples from the
same patient. Specimens were obtained at the time of nephrectomy
for CCRCC. Although the levels detected were variable, Figure 1
shows that there was no significant difference in FIH-1 mRNA or
protein levels between tumour specimens and adjacent kidney
(Figures 1A and B). As expected for cancers where the HIF
pathway is constitutively activated, GLUT1 mRNA levels were
increased in the tumour samples (data not shown).

Factor inhibiting HIF-1 functions in VHL defective CCRCC
cell lines

The presence of equivalent amounts of FIH-1 in tumour and
adjacent kidney suggested that FIH-1 may actually be reducing HIF
activity in this setting; HIF-a subunits would be abnormally
stabilised (because VHL is absent), but HIF transcriptional activity
would be limited by the action of FIH-1 in the presence of oxygen,
which would hydroxylate the CTAD and reduce co-activator
recruitment. To examine this we first exposed VHL defective
RCC10 cells to reduced oxygen, as a means to reduce FIH-1
enzymatic activity. As Figure 2A shows, we found increased mRNA
levels of four well-characterised HIF-a target genes GLUT1, PHD3,
VEGF and BNIP3 in RCC10 and RCC4 at 0.1 and 1% oxygen
(Figure 2A). Expression of each of these genes was further
increased in hypoxia from the high levels observed in the absence
of VHL. Importantly, similar results were obtained in a second
VHL defective cell line, RCC4 (Figure 2A). As reducing oxygena-
tion could have other effects besides attenuating FIH-1 activity, we
used DMOG, a small molecule inhibitor that is an analogue of the
co-substrate 2-oxogluarate as an alternative method of inhibiting
FIH-1. Figure 2B shows that treatment of CCRCC cell lines with
DMOG increases expression of HIF target genes.

These results would be consistent with FIH-1 exerting a negative
effect on HIF activation in these VHL defective cell lines. However
hypoxia and DMOG are not specific inhibitors of FIH-1; they will
inhibit other 2-oxoglutarate-dependent oxygenases including the
PHD enzymes (Epstein et al, 2001). In the absence of VHL, prolyl
hydroxylation of HIF-1a and HIF-2a by the PHD enzymes has been
reported to decrease transactivation by the N-terminal transactiva-
tion domain (NTAD) (To and Huang, 2005), providing a potential
mechanism by which hypoxia and DMOG would increase
expression of HIF targets in a manner independent of FIH-1 and
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Figure 1 The FIH-1 is expressed at a similar level in renal cancer and uninvolved kidney. (A) The FIH-1 mRNA levels in renal cancer samples and
uninvolved kidney from the same patients. n¼ 10. (B) Representative immunoblots showing FIH-1 protein in renal cancer samples and uninvolved kidney
from the same patients.
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CTAD activity. To directly examine whether FIH-1 inhibits HIF
activity we used RNA interference (RNAi). By using either of two
different non-overlapping siRNA sequences independently, we
achieved a significant reduction of FIH-1 at the mRNA (470%
attenuation) and protein level. The FIH-1 knockdown resulted in a
significant increase in HIF target gene mRNA levels as well as
GLUT1 protein levels (Figures 3A and B). Taken together, these
results provide clear evidence that FIH-1 is acting to reduce
expression of HIF target genes in RCC10 and RCC4 cells under
normoxic conditions.

Increasing FIH-1 expression has little effect on the
expression of HIF target genes

The inhibition of HIF transcriptional activity by FIH-1 in RCC10
and RCC4 cells is clearly incomplete as HIF exerts potent effects on
gene expression in these cells, as demonstrated by the effects of
siRNA for HIF-a subunits (Raval et al, 2005). One explanation
for this incomplete inhibition would be that the amount of FIH-1
enzyme in these cells is insufficient to achieve maximal down-
regulation of HIF. We therefore examined the effect of increasing
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Figure 2 Effect of hypoxia and DMOG on gene expression in RCC10 and RCC4 cells. (A) Expression of the indicated HIF target genes was examined by
qRT–PCR in cells that were cultured under standard conditions, 1% oxygen or 0.1% oxygen for 16 h. (B) Expression of HIF target genes following exposure
to the 2-oxoglutarate analogue DMOG (500 mM, 16 h). Data are presented as the mean of three independent experiments. (*Po0.05, **Po0.01,
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expression of FIH-1. A retroviral vector containing cDNA
encoding for FIH-1 was prepared and used to infect RCC10 cells.
The FIH-1 sequence was tagged with the Pk epitope to allow
detection of the exogenous FIH-1 (Figure 4A). Analysis of mRNA
levels showed a Bsix-fold increase in FIH-1 mRNA when
compared with levels in RCC10 cells infected with an empty
vector (Figure 4B). In case the Pk tag might reduce enzymatic
activity, we also performed this experiment with untagged FIH-1,
with similar results (data not shown). This lack of effect of
augmenting FIH-1 contrasts with the effect of introduction of VHL,
which leads to marked suppression of HIF target genes (Maxwell
et al, 1999). This implies that a substantial proportion of HIF
activity is resistant to the action of FIH-1; probably this involves
transactivation mediated by the NTAD of HIF-a subunits, which is
not regulated by FIH-1.

Attenuating FIH-1 does not reduce HIF target gene
expression in 786-O cells, which only express HIF-2a

To investigate this further we examined the effect of FIH-1
knockdown in another well-characterised VHL defective cell line,
786-O, which expresses HIF-2a, but not HIF-1a (Maxwell et al,
1999). We found that FIH-1 siRNA has no effect on HIF target gene
expression in 786-O cells (Figure 5A). This contrasts with our
observations in RCC10 and RCC4 cells, but is in line with a
previous study (Datta et al, 2004). Possible explanations for this
would be either that FIH-1 was inactive in these cells (as was
suggested in the previous study), or that the HIF-2a they contain
is not susceptible to inactivation by FIH-1. To distinguish these
possibilities, we expressed HIF-1a in 786-O cells, and then
performed RNAi against FIH-1. Western blot analysis confirmed
exclusive expression of the HIF-2a isoform in a pool of parental
786-O cells infected with empty vector (pBMNz) and expression of
HIF-1a in cells infected with pBMNz-HIF-1a (Figure 5B). Using
siRNA, we attenuated FIH-1 in both pools of 786-O cells
(Figure 5B). In the pBMNz transfected pool, in which there is
exclusive expression of HIF-2a, attenuation of FIH-1 did not affect
HIF target gene expression. In contrast, in pBMNz-HIF-1a, FIH-1
attenuation augmented HIF target gene levels of PHD3, VEGF and
the pro-apoptotic gene BNIP3 (Figure 5C). These results show that
active FIH-1 is present in 786-O cells, and introducing HIF-1a can
reveal this activity. Furthermore, HIF-2a (at least in 786-O cells)
is insensitive to inactivation by FIH-1.

Attenuating FIH-1 reduces growth of renal cancer cells
expressing HIF-1a and induces apoptosis

Previously it has been shown that HIF-1a has anti-proliferative
effects in VHL defective renal cancer cells (Raval et al, 2005).

This raises the interesting possibility that in cells that lack VHL
and express HIF-1a, FIH-1 may favour tumour growth by
decreasing the anti-proliferative consequences of HIF-1a activation
and shifting the balance of HIF activation towards HIF-2a. To test
this, we examined the effect of FIH-1 siRNA on cell population
expansion and apoptosis of RCC10 and RCC4 cell cultures.
Knockdown of FIH-1 significantly reduced expansion of RCC10
cell cultures using either of the two siRNAs (Figure 6A). The RCC4
and RCC10 cells showed reduced population expansion as assessed
by counting the number of viable cells or by MTT assays
(Figure 6B). In contrast, population expansion of 786-O cells that
do not express HIF-1a was not reduced. This suggested that the
effect of FIH-1 knockdown on population expansion might be
mediated via increasing the activity of HIF-1a. To test this
possibility, RCC10 were transfected with shRNA targeting HIF-1a
before FIH-1 knockdown. This prevented the effect of FIH-1
knockdown on population expansion (Figure 6C). Interestingly,
suppression of HIF-1a expression resulted in modest, but
statistically significant, increase in cell numbers in comparison
with control, consistent with HIF-1a suppressing proliferation
and/or enhancing cell death.

To investigate the mechanism(s) by which cell numbers were
decreased, we assayed cytoplasmic histone-associated DNA frag-
ments to assess apoptotic cell death (Figure 6D). This was
increased by attenuating FIH-1 in VHL defective RCC10 and
RCC4 cells. However, no significant increase was observed in
786-O cells (which express only HIF-2a) or in RCC10 cells in which
VHL was stably expressed, resulting in suppression of HIF-1a
(and HIF-2a). Independent evidence for increased apoptosis was
provided by flow cytometry analysis (Figure 6E). The FIH-1
knockdown in RCC10 cells resulted in an increase in early
apoptotic (Annexin-V positive) cells, compared with the control
siLUC transfection (46.0 vs 9.6%). Taken together, the results are
consistent with FIH-1 decreasing apoptosis through a decrease in
the activity of HIF-1a. The 786-O cells showed a much less marked
effect, but interestingly there was some increase in early apoptotic
cells, on FIH-1 knockdown (16.59% with siRNA for FIH vs 5.7% in
controls) (Data not shown). This may reflect a HIF-a, independent
action of FIH-1 mediated by one of a number of other identified
substrates, which includes components of the Notch or NFkB
pathways (Cockman et al, 2006; Coleman et al, 2007; Zheng et al,
2008).

DISCUSSION

The major findings of this study are that FIH-1 is present at similar
levels in normal kidney and CCRCC, that FIH-1 inhibition in
CCRCC cells can increase expression of HIF targets, and that
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inhibiting FIH-1 can increase apoptosis in these cells. It is
noteworthy that FIH-1 expression is maintained in CCRCC
compared with normal kidney, as it was previously suggested that
an important step in evolution to CCRCC following the loss of VHL
function was suppression of FIH-1. In that model, suppression of
FIH-1 was considered necessary to achieve HIF activation. Our
study shows that FIH-1 is present and active in CCRCC, but it only
partially inactivates HIF. This is consistent with the fact that
biallelic inactivation of vhl in mouse and human renal epithelium
(and other cell types) is associated with marked activation of HIF
target genes, even though FIH-1 has not been inactivated
(Mandriota et al, 2002; Rankin et al, 2006).

Evidence for the model in which suppression of FIH-1 was a
pivotal aspect of CCRCC included the fact that decreasing FIH-1
did not influence HIF activity in 786-O cells. Our study confirms
this observation, but implies a different mechanism in which FIH-1
is present but the HIF-2a in these cells is resistant to its action. In
the previous studies it was suggested that FIH-1 suppression was
achieved in CCRCC via PKCz suppressing FIH-1 at the level of
transcription. Our finding that FIH-1 expression is similar in
normal kidney and CCRCC implies that any negative effect of
PKCz is likely to be present in normal renal epithelium as well as
CCRCC. This is supported by the fact that similar suppression
of FIH-1 via PKC was also observed in HEK 293 cells, a
non-malignant renal cell line (Li et al, 2007).

Although we show that FIH-1 is present in CCRCC, it is striking
that its action on HIF ranges from partial suppression (RCC10 and
RCC4 cells) to no significant effect (in 786-O cells). Several factors
are likely to contribute. First, the amount of FIH-1 available may
be insufficient—for example, it may be sequestered through
binding to ankyrin repeat domains. However, it is notable that
overexpression of FIH-1 had only a minor effect on HIF activity.
Second, a substantial proportion of transactivation by HIF-a is
independent of the interaction with the CH1 pocket of CBP/P300
(Kasper et al, 2005), this would be predicted to be insensitive to

FIH-1 and will include the action of the NTAD. Third, a subset of
HIF-a subunits may be resistant to the action of FIH-1. As HIF-1a
is known to be a substantially better substrate for FIH-1 than
HIF-2a (Bracken et al, 2006) it is likely that this resistant fraction is
predominantly HIF-2a. This is further supported by data that
mutating the FIH-1 target residue in HIF-2a did not increase its
effect on HIF target genes or tumour growth in CCRCC cells,
whereas substituting the equivalent residue in HIF-1a had a major
effect (Yan et al, 2007). This is consistent with 786-O cells not
showing evidence of increased HIF activity following FIH-1
knockdown, as they only contain HIF-2a. In addition, it is clear
that a proportion of HIF-1a in RCC10 and RCC4 is not inactivated
by FIH-1, as RNAi for HIF-1a in these cells has potent effects
on gene expression and epithelial behaviour (Esteban et al, 2006).
A possibility that merits further investigation is that a post-
translational modification renders a proportion of HIF-1a resistant
to the action of FIH-1. Reported modifications of HIF-a that could
be candidates include phosphorylation, acetylation and sumoyla-
tion. An important candidate modification is phosphorylation of
Thr-796 in HIF-1a, which can prevent hydroxylation by FIH-1
(Lancaster et al, 2004).

Regardless of the mechanism(s) by which a substantial
proportion of HIF activity in CCRCC is resistant to FIH-1, we
show that FIH-1 is protecting RCC10 cells from apoptosis and this
is mediated by its effect on HIF-1a. That increased activity of HIF
is associated with increased apoptosis may appear counter-
intuitive, in view of the evidence that suppressing of HIF is a
major aspect of VHL’s action as a tumour suppressor in the
kidney. On the other hand, it is well recognised that although many
of HIF-1a’s actions promote tumour growth it can also promote
cell cycle arrest and apoptosis. Activation of HIF-1a subunit
increases expression of genes that are pro-apoptotic (Sowter et al,
2001; Greijer and van der Wall, 2004) and overexpression of
HIF-1a has been shown to reduce growth of CCRCC cells as xenografts
(Volm and Koomagi, 2000; Raval et al, 2005). Furthermore, foci of
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biallelic inactivation of VHL in human kidney, which show HIF-1a
activation, are not associated with a net increase in proliferation
(Mandriota et al, 2002). This suggests that evolution to CCRCC
involves a number of additional steps, and there is evidence that a
progressive increase in HIF-2a relative to HIF-1a is important.
Consistent with this, in xenograft assays of CCRCC cells, active
HIF-2a is both necessary and sufficient for tumour growth (Kondo
et al, 2002, 2003), whereas active HIF-1a is insufficient (Maranchie
et al, 2002). An attractive possibility is that by exerting more effect
on HIF-1a than HIF-2a, FIH-1 contributes to VHL defective cells
evading apoptosis. This is also consistent with the fact that
mutations in FIH-1 have not been reported in CCRCC (Morris
et al, 2004).

The intersection of the effects of VHL, HIF and FIH-1 on
patterns of gene expression and on cell proliferation have recently
been examined in murine embryonic fibroblasts with genetic

deletions of each gene, and multiple combinations thereof (Zhang
et al, 2010). In murine embryonic fibroblasts (MEFs) loss of FIH-1
was shown to have significant and complex effects on expression of
HIF target genes in the absence of VHL under normoxic
conditions. Loss of VHL in MEFs was associated with reduced
plating efficiency and there was an additive negative effect of loss
of FIH-1, consistent with the effects that we observe of FIH-1
knockdown on population expansion in CCRCC cells. Strikingly,
removal of HIF-1a restored plating efficiency to that of controls.

The crystal structure of FIH-1 has been solved and there are
prototype inhibitors implying it will be druggable (Banerji et al,
2005; McDonough et al, 2005; Moon et al, 2010). An important
consideration is that other FIH-1 substrates have been identified
besides HIF-1a. In particular, it has been shown that asparagine
residues in ankyrin repeat domains are hydroxylated by FIH-1
including the intracellular domain (ICD) of the Notch receptor, the

RCC 10 RCC 4 786–0 RCC 10/VHL+

2.0

1.5

1.0

0.5

0.0

2.5 siLUC
siFIH **

*

A
po

pt
os

is
-r

el
at

ed
nu

cl
eo

so
m

es
 (

O
D

 4
05

)

**
*** ***

*

*

Day 3Day 2Day 1 Day 3Day 2Day 1 Day 3Day 2Day 1

Day 3Day 2Day 1Day 3Day 2Day 1Day 3Day 2Day 1

0

siLUC
siFIH

siLUC
siFIH

siLUC
siFIH

siLUC
siFIH

siLUC
siFIH

siLUC
siFIH

RCC 10 RCC4

RCC 10 RCC 4

N
um

be
r 

of
 c

el
ls

N
um

be
r 

of
 c

el
ls

N
um

be
r 

of
 c

el
ls

**

0

786–0

786–0
1.5

1.0

0.5

0.0A
bs

or
ba

nc
e 

at
 5

50
nm

A
bs

or
ba

nc
e 

at
 5

50
nm

A
bs

or
ba

nc
e 

at
 5

50
nm0.45

0.40

0.30

0.20

0.35

0.25

1.0

0.8

0.6

0.4

0.2

0.0

0

8.0×104

6.0×104

4.0×104

2.0×104

8×1004

6×1004

4×1004

2×1004

0

8×1004 3×1005

2×1005

2×1005

1×1005

5×1005

6×1004

4×1004

2×1004

8.0×103

1.0×104

6.0×103

4.0×103

2.0×103

*
*

*
*

N
um

be
r 

of
 c

el
ls

N
um

be
r 

of
 c

el
ls

LUC-C LUC-FIH HIF 1�-C HIF 1�- FIH
0

*
*

550

U sIFIH1#1

siRNA (nM)

FIH

HIF-1�

HIF-2�

Actin

LUC HIF-1�

C CFIH-1 FIH-1
shRNA

siRNA

HIF-1�

FIH-1

HIF-2�

Actin

PI

siLUC

Annexin

PI

Dead 5.8%

Dead 10.7%

Early
apoptotic

9.6%

Early
apoptotic

46%

PI

siFIH

Annexin

PI

50255 5025

siFIH1#2siLUC

Figure 6 Effects of FIH-1 knockdown on population expansion of CCRCC cell lines. (A) The RCC10 cells were cultured in parallel and either untreated,
treated with the indicated concentrations of two different siRNAs targeting FIH-1, or control siRNA at 50 nM. After 72 h, cell numbers were counted
(*Po0.05). Immunoblot shows expression of FIH-1, HIF-1a, and HIF-2a. (B) Cultures of RCC10, RCC4 and 786-O, which were treated with FIH-1 siRNA
or control siRNA were assessed by counting the number of viable cells at the indicated timepoints (top panel). Cultures of RCC10, RCC4 and 786-O were
treated with FIH-1 siRNA or control siRNA and assessed by MTT assay (lower panel). Data are presented as the mean of three independent experiments
(*Po0.05, **Po0.01). (C) The RCC10 cells were infected with shRNA vectors for luciferase (control) or HIF-1a. Following selection with G418 they were
treated either with control or FIH-1 siRNA and the number of cells was counted 72 h later. The effect of FIH-1 knockdown on cell number was abrogated by
knockdown of HIF-1a. Note also that HIF-1a knockdown significantly increased cell numbers compared with control (compare bars 1 and 3). Immunoblots
show expression of HIF-1a, HIF-2a and FIH-1. (D) Cytoplasmic histone-associated DNA fragments were assessed in the indicated cell lines following
treatment with FIH-1 siRNA or control. Increased cell death occurred in RCC10 and RCC4 but not in 786-O cells (which express only HIF-2a) or RCC10/
VHL in which re-expression of VHL restores HIF-a to basal levels (þ ve). Data are presented as the mean of three independent experiments (*Po0.05,
**Po0.01). (E) Effect of FIH-1 knockdown on apoptosis in RCC10 and 786-O cells. Cells were transfected with siLUC or siFIH and analysed for apoptosis
using the BD Pharmingen FITC Annexin V apoptosis detection kit. Plots are representative of two independent experiments.

FIH-1 knockdown increases apoptosis in renal cancer cells

MN Khan et al

1157

British Journal of Cancer (2011) 104(7), 1151 – 1159& 2011 Cancer Research UK

M
o

le
c
u

la
r

D
ia

g
n

o
st

ic
s



IkB family of inhibitory proteins and tankyrase (Cockman et al,
2006, 2009; Coleman et al, 2007; Ferguson et al, 2007; Zheng et al,
2008). Therefore FIH-1 inhibition is likely to have wide-ranging
effects that would have to be investigated before FIH-1 can be
considered a suitable target for inhibition.

Useful insight into this is provided by the recently reported
knockout mouse, which is viable but exhibits hyper-
metabolism (Zhang et al, 2010). Our study raises the possibility
that FIH-1 would be a useful therapeutic target in clear cell renal
carcinoma.
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