28 research outputs found

    Treatment with G-CSF reduces acute myeloid leukemia blast viability in the presence of bone marrow stroma

    Get PDF
    BACKGROUND: The resulting clinical impact of the combined use of G-CSF with chemotherapy as a chemosensitizing strategy for treatment of acute myeloid leukemia (AML) patients is still controversial. In this study, the effect of ex vivo treatment with G-CSF on AML primary blasts was studied. METHODS: Peripheral blood mononuclear cells from AML patients were treated with G-CSF at increasing doses, alone or in co-culture with HS-5 stromal cells. Cell viability and surface phenotype was determined by flow cytometry 72 h after treatment. For clonogenicity assays, AML primary samples were treated for 18 h with G-CSF at increasing concentrations and cultured in methyl-cellulose for 14 days. Colonies were counted based on cellularity and morphology criteria. RESULTS: The presence of G-CSF reduced the overall viability of AML cells co-cultured with bone marrow stroma; whereas, in absence of stroma, a negligible effect was observed. Moreover, clonogenic capacity of AML cells was significantly reduced upon treatment with G-CSF. Interestingly, reduction in the AML clonogenic capacity correlated with the sensitivity to chemotherapy observed in vivo. CONCLUSIONS: These ex vivo results would provide a biological basis to data available from studies showing a clinical benefit with the use of G-CSF as a priming agent in patients with a chemosensitive AML and would support implementation of further studies exploring new strategies of chemotherapy priming in AML

    The expression level of BAALC -associated microRNA miR-3151 is an independent prognostic factor in younger patients with cytogenetic intermediate-risk acute myeloid leukemia

    Get PDF
    Acute myeloid leukemia (AML) is a heterogeneous disease whose prognosis is mainly related to the biological risk conferred by cytogenetics and molecular profiling. In elderly patients (⩾60 years) with normal karyotype AML miR-3151 have been identified as a prognostic factor. However, miR-3151 prognostic value has not been examined in younger AML patients. In the present work, we have studied miR-3151 alone and in combination with BAALC, its host gene, in a cohort of 181 younger intermediate-risk AML (IR-AML) patients. Patients with higher expression of miR-3151 had shorter overall survival (P =0.0025), shorter leukemia-free survival (P =0.026) and higher cumulative incidence of relapse (P =0.082). Moreover, in the multivariate analysis miR-3151 emerged as independent prognostic marker in both the overall series and within the unfavorable molecular prognostic category. Interestingly, the combined determination of both miR-3151 and BAALC improved this prognostic stratification, with patients with low levels of both parameters showing a better outcome compared with those patients harboring increased levels of one or both markers (P =0.003). In addition, we studied the microRNA expression profile associated with miR-3151 identifying a six-microRNA signature. In conclusion, the analysis of miR-3151 and BAALC expression may well contribute to an improved prognostic stratification of younger patients with IR-AML

    The lincRNA HOTAIRM1, located in the HOXA genomic region, is expressed in acute myeloid leukemia, impacts prognosis in patients in the intermediate-risk cytogenetic category, and is associated with a distinctive microRNA signature

    Get PDF
    Altres ajuts: SDCSD from School of Medicine, University of BarcelonaLong non-coding RNAs (lncRNAs) are deregulated in several tumors, although their role in acute myeloid leukemia (AML) is mostly unknown.We have examined the expression of the lncRNA HOX antisense intergenic RNA myeloid 1 (HOTAIRM1) in 241 AML patients. We have correlated HOTAIRM1 expression with a miRNA expression profile. We have also analyzed the prognostic value of HOTAIRM1 expression in 215 intermediate-risk AML (IR-AML) patients.The lowest expression level was observed in acute promyelocytic leukemia (P < 0.001) and the highest in t(6;9) AML (P = 0.005). In 215 IR-AML patients, high HOTAIRM1 expression was independently associated with shorter overall survival (OR:2.04;P = 0.001), shorter leukemia-free survival (OR:2.56; P < 0.001) and a higher cumulative incidence of relapse (OR:1.67; P = 0.046). Moreover, HOTAIRM1 maintained its independent prognostic value within the favorable molecular subgroup (OR: 3.43; P = 0.009). Interestingly, HOTAIRM1 was overexpressed in NPM1-mutated AML (P < 0.001) and within this group retained its prognostic value (OR: 2.21; P = 0.01). Moreover, HOTAIRM1 expression was associated with a specific 33-microRNA signature that included miR-196b (P < 0.001). miR-196b is located in the HOX genomic region and has previously been reported to have an independent prognostic value in AML. miR-196b and HOTAIRM1 in combination as a prognostic factor can classify patients as high-, intermediate-, or low-risk (5-year OS: 24% vs 42% vs 70%; P = 0.004).Determination of HOTAIRM1 level at diagnosis provided relevant prognostic information in IR-AML and allowed refinement of risk stratification based on common molecular markers. The prognostic information provided by HOTAIRM1 was strengthened when combined with miR-196b expression. Furthermore, HOTAIRM1 correlated with a 33-miRNA signatur

    European LeukemiaNet 2017 risk stratification for acute myeloid leukemia: validation in a risk-adapted protocol

    Get PDF
    The 2017 European LeukemiaNet (ELN 2017) guidelines for the diagnosis and management of acute myeloid leukemia (AML) have become fundamental guidelines to assess the prognosis and postremission therapy of patients. However, they have been retrospectively validated in few studies with patients included in different treatment protocols. We analyzed 861 patients included in the Cooperativo Para el Estudio y Tratamiento de las Leucemias Agudas y Mielodisplasias-12 risk-adapted protocol, which indicates cytarabine-based consolidation for patients allocated to the ELN 2017 favorable-risk group, whereas it recommends allogeneic stem cell transplantation (alloSCT) as a postremission strategy for the ELN 2017 intermediateand adverse-risk groups. We retrospectively classified patients according to the ELN 2017, with 327 (48%), 109 (16%), and 245 (36%) patients allocated to the favorable-, intermediate-, and adverse-risk group, respectively. The 2- and 5-year overall survival (OS) rates were 77% and 70% for favorable-risk patients, 52% and 46% for intermediate-risk patients, and 33% and 23% for adverse-risk patients, respectively. Furthermore, we identified a subgroup of patients within the adverse group (inv(3)/t(3;3), complex karyotype, and/or TP53 mutation/17p abnormality) with a particularly poor outcome, with a 2-year OS of 15%. Our study validates the ELN 2017 risk stratification in a large cohort of patients treated with an ELN-2017 risk-adapted protocol based on alloSCT after remission for nonfavorable ELN subgroups and identifies a genetic subset with a very poor outcome that warrants investigation of novel strategies

    The expression level of BAALC-associated microRNA miR-3151 is an independent prognostic factor in younger patients with cytogenetic intermediate-risk acute myeloid leukemia.

    No full text
    Acute myeloid leukemia (AML) is a heterogeneous disease whose prognosis is mainly related to the biological risk conferred by cytogenetics and molecular profiling. In elderly patients (⩾60 years) with normal karyotype AML miR-3151 have been identified as a prognostic factor. However, miR-3151 prognostic value has not been examined in younger AML patients. In the present work, we have studied miR-3151 alone and in combination with BAALC, its host gene, in a cohort of 181 younger intermediate-risk AML (IR-AML) patients. Patients with higher expression of miR-3151 had shorter overall survival (P=0.0025), shorter leukemia-free survival (P=0.026) and higher cumulative incidence of relapse (P=0.082). Moreover, in the multivariate analysis miR-3151 emerged as independent prognostic marker in both the overall series and within the unfavorable molecular prognostic category. Interestingly, the combined determination of both miR-3151 and BAALC improved this prognostic stratification, with patients with low levels of both parameters showing a better outcome compared with those patients harboring increased levels of one or both markers (P=0.003). In addition, we studied the microRNA expression profile associated with miR-3151 identifying a six-microRNA signature. In conclusion, the analysis of miR-3151 and BAALC expression may well contribute to an improved prognostic stratification of younger patients with IR-AML.Marina Díaz-Beyá is supported by ISCIII (Rio Hortega CM13/00205). This research was in part supported by Fundación Española de Hematologia y Hemoterapia (beca de investigación MDB). This research is also supported by grants from Fondo de Investigaciones Sanitarias/Instituto de Salud Carlos III PI13/00999 (PI: JE), RETICS RD12/0036/0010 (JE; MDB) and SDCSD from School of Medicine, University of Barcelona, AECC-Catalunya 2013 (AN) (sponsored by Mat Holding), and grants AGAUR 2014SGR-1281, ISCIII RD12/0036/0071 and PI014/00450 (JS). Anna Cordeiro is an APIF fellow of the University of Barcelona

    Treatment with G-CSF reduces acute myeloid leukemia blast viability in the presence of bone marrow stroma

    No full text
    BACKGROUND: The resulting clinical impact of the combined use of G-CSF with chemotherapy as a chemosensitizing strategy for treatment of acute myeloid leukemia (AML) patients is still controversial. In this study, the effect of ex vivo treatment with G-CSF on AML primary blasts was studied. METHODS: Peripheral blood mononuclear cells from AML patients were treated with G-CSF at increasing doses, alone or in co-culture with HS-5 stromal cells. Cell viability and surface phenotype was determined by flow cytometry 72 h after treatment. For clonogenicity assays, AML primary samples were treated for 18 h with G-CSF at increasing concentrations and cultured in methyl-cellulose for 14 days. Colonies were counted based on cellularity and morphology criteria. RESULTS: The presence of G-CSF reduced the overall viability of AML cells co-cultured with bone marrow stroma; whereas, in absence of stroma, a negligible effect was observed. Moreover, clonogenic capacity of AML cells was significantly reduced upon treatment with G-CSF. Interestingly, reduction in the AML clonogenic capacity correlated with the sensitivity to chemotherapy observed in vivo. CONCLUSIONS: These ex vivo results would provide a biological basis to data available from studies showing a clinical benefit with the use of G-CSF as a priming agent in patients with a chemosensitive AML and would support implementation of further studies exploring new strategies of chemotherapy priming in AML
    corecore