25 research outputs found

    Universality in Bacterial Colonies

    Full text link
    The emergent spatial patterns generated by growing bacterial colonies have been the focus of intense study in physics during the last twenty years. Both experimental and theoretical investigations have made possible a clear qualitative picture of the different structures that such colonies can exhibit, depending on the medium on which they are growing. However, there are relatively few quantitative descriptions of these patterns. In this paper, we use a mechanistically detailed simulation framework to measure the scaling exponents associated with the advancing fronts of bacterial colonies on hard agar substrata, aiming to discern the universality class to which the system belongs. We show that the universal behavior exhibited by the colonies can be much richer than previously reported, and we propose the possibility of up to four different sub-phases within the medium-to-high nutrient concentration regime. We hypothesize that the quenched disorder that characterizes one of these sub-phases is an emergent property of the growth and division of bacteria competing for limited space and nutrients.Comment: 12 pages, 5 figure

    Prion protein: evolution caught en route?

    No full text

    A C-Terminal Region of Yersinia pestis YscD Binds the Outer Membrane Secretin YscC▿†

    No full text
    YscD is an essential component of the plasmid pCD1-encoded type III secretion system (T3SS) of Yersinia pestis. YscD has a single transmembrane (TM) domain that connects a small N-terminal cytoplasmic region (residues 1 to 121) to a larger periplasmic region (residues 143 to 419). Deletion analyses established that both the N-terminal cytoplasmic region and the C-terminal periplasmic region are required for YscD function. Smaller targeted deletions demonstrated that a predicted cytoplasmic forkhead-associated (FHA) domain is also required to assemble a functional T3SS; in contrast, a predicted periplasmic phospholipid binding (BON) domain and a putative periplasmic “ring-building motif” domain of YscD could be deleted with no significant effect on the T3S process. Although deletion of the putative “ring-building motif” domain did not disrupt T3S activity per se, the calcium-dependent regulation of the T3S apparatus was affected. The extreme C-terminal region of YscD (residues 354 to 419) was essential for secretion activity and had a strong dominant-negative effect on the T3S process when exported to the periplasm of the wild-type parent strain. Coimmunoprecipitation studies demonstrated that this region of YscD mediates the interaction of YscD with the outer membrane YscC secretin complex. Finally, replacement of the YscD TM domain with a TM domain of dissimilar sequence had no effect on the T3S process, indicating that the TM domain has no sequence-specific function in the assembly or function of the T3SS

    An overview of multiple sequence alignment methods applied to transmembrane proteins

    No full text
    \u3cp\u3eTransmembrane proteins (TMPs) have received a great deal of attention playing a fundamental role in cell biology and are considered to constitute around 30% of proteins at genomic scale. Multiple Sequence Alignment (MSA) problem has been studied for some years and researchers have proposed many heuristic and stochastic techniques tailored for sequences of soluble proteins, considering that there are a few particular differences that ought to be taken into consideration aligning TMPs sequences, these techniques are therefore not optimal to align this special class of proteins. There is a small number of MSA methods applied specifically to TMPs. In this review, we have summarized the features, implementations and performance results of three MSA methods applied to TMPs: PRALINE™, ™-Coffee and TM-Aligner. These methods have illustrated impressive advances in the accuracy and computational efforts aligning TMPs sequences.\u3c/p\u3

    Novel Topology of BfpE, a Cytoplasmic Membrane Protein Required for Type IV Fimbrial Biogenesis in Enteropathogenic Escherichia coli

    No full text
    Enteropathogenic Escherichia coli (EPEC) produces the bundle-forming pilus (BFP), a type IV fimbria that has been implicated in virulence, autoaggregation, and localized adherence to epithelial cells. The bfpE gene is one of a cluster of bfp genes previously shown to encode functions that direct BFP biosynthesis. Here, we show that an EPEC strain carrying a nonpolar mutation in bfpE fails to autoaggregate, adhere to HEp-2 cells, or form BFP, thereby demonstrating that BfpE is required for BFP biogenesis. BfpE is a cytoplasmic membrane protein of the GspF family. To determine the membrane topology of BfpE, we fused bfpE derivatives containing 3′ truncations and/or internal deletions to alkaline phosphatase and/or β-galactosidase reporter genes, whose products are active only when localized to the periplasm or cytoplasm, respectively. In addition, we constructed BfpE sandwich fusions using a dual alkaline phosphatase/β-galactosidase reporter cassette and analyzed BfpE deletion derivatives by sucrose density flotation gradient fractionation. The data from these analyses support a topology in which BfpE contains four hydrophobic transmembrane (TM) segments, a large cytoplasmic segment at its N terminus, and a large periplasmic segment near its C terminus. This topology is dramatically different from that of OutF, another member of the GspF family, which has three TM segments and is predominantly cytoplasmic. These findings provide a structural basis for predicting protein-protein interactions required for assembly of the BFP biogenesis machinery
    corecore