100 research outputs found

    Observed and Physical Properties of Core-Collapse Supernovae

    Get PDF
    I use photometry and spectroscopy data for 24 Type II plateau supernovae to examine their observed and physical properties. This dataset shows that these objects encompass a wide range of ~5 mag in their plateau luminosities, their expansion velocities vary by x5, and the nickel masses produced in these explosions go from 0.0016 to 0.26 Mo. From a subset of 16 objects I find that the explosion energies vary between 0.6x and 5.5x10^51 ergs, the ejected masses encompass the range 14-56 Mo, and the progenitors' radii go from 80 to 600 Ro. Despite this great diversity several regularities emerge, which reveal that there is a continuum in the properties of these objects from the faint, low-energy, nickel-poor SNe 1997D and 1999br, to the bright, high-energy, nickel-rich SN 1992am. This study provides evidence that more massive progenitors produce more energetic explosions, thus suggesting that the outcome of the core collapse is somewhat determined by the envelope mass. I find also that supernovae with greater energies produce more nickel. Similar relationships appear to hold for Type Ib/c supernovae, which suggests that both Type II and Type Ib/c supernovae share the same core physics. When the whole sample of core collapse objects is considered, there is a continous distribution of energies below 8x10^51 ergs. Far above in energy scale and nickel production lies the extreme hypernova 1998bw, the only supernova firmly associated to a GRB.Comment: 25 pages, 7 figures, accepted for Part 1 of Astrophysical Journa

    The Supernova Impostor Impostor SN 1961V: Spitzer Shows That Zwicky Was Right (Again)

    Full text link
    SN 1961V, one of Zwicky's defining Type V supernovae (SN), was a peculiar transient in NGC 1058 that has variously been categorized as either a true core collapse SN leaving a black hole (BH) or neutron star (NS) remnant, or an eruption of a luminous blue variable (LBV) star. The former case is suggested by its association with a decaying non-thermal radio source, while the latter is suggested by its peculiar transient light curve and its low initial expansion velocities. The crucial difference is that the star survives a transient eruption but not an SN. All stars identified as possible survivors are significantly fainter, L_opt ~ 10^5 Lsun, than the L_opt ~ 3 10^6 Lsun progenitor star at optical wavelengths. While this can be explained by dust absorption in a shell of material ejected during the transient, the survivor must then be present as a L_IR ~ 3 10^6 Lsun mid-infrared source. Using archival Spitzer observations of the region, we show that such a luminous mid-IR source is not present. The brightest source of dust emission is only L_IR ~ 10^5 Lsun and does not correspond to the previously identified candidates for the surviving star. The dust cannot be made sufficiently distant and cold to avoid detection unless the ejection energy, mass and velocity scales are those of a SN or greater. We conclude that SN 1961V was a peculiar, but real, supernova. Its peculiarities are probably due to enhanced mass loss just prior to the SN, followed by the interactions of the SN blast wave with this ejecta. This adds to the evidence that there is a population of SN progenitors that have major mass loss episodes shortly before core collapse. The progenitor is a low metallicity, ~1/3 solar, high mass, M_ZAMS > 80 Msun, star, which means either that BH formation can be accompanied by an SN or that surprisingly high mass stars can form a NS.Comment: 26 pages, 7 figures, submitted to Ap

    Palomar 13: An Unusual Stellar System in the Galactic Halo

    Get PDF
    We have measured Keck/HIRES radial velocities for 30 candidate red giants in the direction of Palomar 13: an object traditionally cataloged as a compact, low-luminosity globular cluster. From a sample of 21 confirmed members, we find a systemic velocity of 24.1 km/s and a projected, intrinsic velocity dispersion of 2.2 km/s. Although small, this dispersion is several times larger than that expected for a globular cluster of this luminosity and central concentration. Taken at face value, this dispersion implies a mass-to-light ratio of ~ 40 (in solar units) based on the best-fit King-Michie model. The surface density profile of Palomar 13 also appears to be anomalous among Galactic globular clusters -- depending upon the details of background subtraction and model-fitting, Palomar 13 either contains a substantial population of "extra-tidal" stars, or it is far more spatially extended than previously suspected. The full surface density profile is equally well-fit by a King-Michie model having a high concentration and large tidal radius, or by a NFW model. We examine -- and tentatively reject -- a number of possible explanations for the observed characteristics of Palomar 13 (e.g., velocity "jitter" among the red giants, spectroscopic binary stars, non-standard mass functions, modified Newtonian dynamics), and conclude that the two most plausible scenarios are either catastrophic heating during a recent perigalacticon passage, or the presence of a massive dark halo. Thus, the available evidence suggests that Palomar 13 is either a globular cluster which is now in the process of dissolving into the Galactic halo, or a faint, dark-matter-dominated stellar system (ABRIDGED).Comment: 31 pages, 13 postscript figures and 1 color gif image. Also available at http://www.physics.rutgers.edu/ast/ast-rap.html. Accepted for publication in the Astrophysical Journa

    Investigation of Non-Stable Processes in Close Binary Ry Scuti

    Full text link
    We present results of reanalysis of old electrophotometric data of early type close binary system RY Scuti obtained at the Abastumani Astrophysical Observatory, Georgia, during 1972-1990 years and at the Maidanak Observatory, Uzbekistan, during 1979-1991 years. It is revealed non-stable processes in RY Sct from period to period, from month to month and from year to year. This variation consists from the hundredths up to the tenths of a magnitude. Furthermore, periodical changes in the system's light are displayed near the first maximum on timescales of a few years. That is of great interest with regard to some similar variations seen in luminous blue variable (LBV) stars. This also could be closely related to the question of why RY Sct ejected its nebula.Comment: 11 pages, 6 figures, 2 table

    Palomar 13's Last Stand

    Get PDF
    We present a proper motion and CCD photometric study of stars in the distant halo globular cluster Palomar 13. The absolute proper motion of Pal 13 with respect to the background galaxies, derived from moderate scale photographic plates separated by a 40-year baseline, is (ΌαcosÎŽ,ΌΎ)=(+2.30,+0.27)±(0.26,0.25)(\mu_{\alpha cos \delta}, \mu_{\delta}) = (+2.30, +0.27) \pm (0.26, 0.25) milliarc-seconds per year. The resultant total space velocity (315 km s−1^{-1}) implies that Pal 13 is in the inner part of its orbit near perigalacticon. Orbital integration reveals the cluster to possess an inclined, very eccentric, retrograde orbit. These data confirm that Pal 13 is a paradigm "young halo" globular cluster. The derived proper motions for cluster stars are used to produce membership probabilities and a cleaned CCD UBV catalogue for Pal 13. With this data set we have made small revisions to Pal 13's distance, metallicity, position and light profile. The membership of four previously reported RR Lyrae variables and a proportionally large group of blue straggler stars are confirmed. As expected, the blue stragglers are centrally concentrated. The small size of this cluster, combined with the shape of its light profile, which shows a clear departure from a classical King function beyond the tidal radius, suggests that Pal 13 is in the final throes of destruction. This could explain the large blue straggler specific frequency, as destructive processes would preferentially strip less massive stars.Comment: 54 pages, 9 figures, 7 tables, accapted for publication in February 2001 A

    Constraining Cosmic Evolution of Type Ia Supernovae

    Get PDF
    We present the first large-scale effort of creating composite spectra of high-redshift type Ia supernovae (SNe Ia) and comparing them to low-redshift counterparts. Through the ESSENCE project, we have obtained 107 spectra of 88 high-redshift SNe Ia with excellent light-curve information. In addition, we have obtained 397 spectra of low-redshift SNe through a multiple-decade effort at Lick and Keck Observatories, and we have used 45 UV spectra obtained by HST/IUE. The low-redshift spectra act as a control sample when comparing to the ESSENCE spectra. In all instances, the ESSENCE and Lick composite spectra appear very similar. The addition of galaxy light to the Lick composite spectra allows a nearly perfect match of the overall spectral-energy distribution with the ESSENCE composite spectra, indicating that the high-redshift SNe are more contaminated with host-galaxy light than their low-redshift counterparts. This is caused by observing objects at all redshifts with the same slit width, which corresponds to different projected distances. After correcting for the galaxy-light contamination, subtle differences in the spectra remain. We have estimated the systematic errors when using current spectral templates for K-corrections to be ~0.02 mag. The variance in the composite spectra give an estimate of the intrinsic variance in low-redshift maximum-light SN spectra of ~3% in the optical and growing toward the UV. The difference between the maximum light low and high-redshift spectra constrain SN evolution between our samples to be < 10% in the rest-frame optical.Comment: 22 pages, 22 figures, submitted to ApJ. Composite spectra can be downloaded from http://astro.berkeley.edu/~rfoley/composite

    Understanding the unsteady pressure field inside combustion chambers of compression-ignited engines using a computational fluid dynamics approach

    Full text link
    [EN] In this article, a numerical methodology for assessing combustion noise in compression ignition engines is described with the specific purpose of analysing the unsteady pressure field inside the combustion chamber. The numerical results show consistent agreement with experimental measurements in both the time and frequency domains. Nonetheless, an exhaustive analysis of the calculation convergence is needed to guarantee an independent solution. These results contribute to the understanding of in-cylinder unsteady processes, especially of those related to combustion chamber resonances, and their effects on the radiated noise levels. The method was applied to different combustion system configurations by modifying the spray angle of the injector, evidencing that controlling the ignition location through this design parameter, it is possible to decrease the combustion noise by minimizing the resonance contribution. Important efficiency losses were, however, observed due to the injector/bowl matching worsening which compromises the performance and emissions levels.The authors want to express their gratitude to CONVERGENT SCIENCE Inc. and Convergent Science GmbH for their kind support for performing the CFD calculations using CONVERGE software.Torregrosa, AJ.; Broatch, A.; Margot, X.; GĂłmez-Soriano, J. (2018). Understanding the unsteady pressure field inside combustion chambers of compression-ignited engines using a computational fluid dynamics approach. International Journal of Engine Research. 1-13. https://doi.org/10.1177/1468087418803030S113Benajes, J., Novella, R., De Lima, D., & TribottĂ©, P. (2014). Analysis of combustion concepts in a newly designed two-stroke high-speed direct injection compression ignition engine. International Journal of Engine Research, 16(1), 52-67. doi:10.1177/1468087414562867Costa, M., Bianchi, G. M., Forte, C., & Cazzoli, G. (2014). A Numerical Methodology for the Multi-objective Optimization of the DI Diesel Engine Combustion. Energy Procedia, 45, 711-720. doi:10.1016/j.egypro.2014.01.076Navid, A., Khalilarya, S., & Taghavifar, H. (2016). Comparing multi-objective non-evolutionary NLPQL and evolutionary genetic algorithm optimization of a DI diesel engine: DoE estimation and creating surrogate model. Energy Conversion and Management, 126, 385-399. doi:10.1016/j.enconman.2016.08.014Benajes, J., GarcĂ­a, A., Pastor, J. M., & Monsalve-Serrano, J. (2016). Effects of piston bowl geometry on Reactivity Controlled Compression Ignition heat transfer and combustion losses at different engine loads. Energy, 98, 64-77. doi:10.1016/j.energy.2016.01.014Masterton, B., Heffner, H., & Ravizza, R. (1969). The Evolution of Human Hearing. The Journal of the Acoustical Society of America, 45(4), 966-985. doi:10.1121/1.1911574Strahle, W. C. (1978). Combustion noise. Progress in Energy and Combustion Science, 4(3), 157-176. doi:10.1016/0360-1285(78)90002-3Flemming, F., Sadiki, A., & Janicka, J. (2007). Investigation of combustion noise using a LES/CAA hybrid approach. Proceedings of the Combustion Institute, 31(2), 3189-3196. doi:10.1016/j.proci.2006.07.060Klos, D., & Kokjohn, S. L. (2014). Investigation of the sources of combustion instability in low-temperature combustion engines using response surface models. International Journal of Engine Research, 16(3), 419-440. doi:10.1177/1468087414556135Cyclic dispersion in engine combustion—Introduction by the special issue editors. (2015). International Journal of Engine Research, 16(3), 255-259. doi:10.1177/1468087415572740Hickling, R., Feldmaier, D. A., & Sung, S. H. (1979). Knock‐induced cavity resonances in open chamber diesel engines. The Journal of the Acoustical Society of America, 65(6), 1474-1479. doi:10.1121/1.382910Torregrosa, A. J., Broatch, A., Margot, X., Marant, V., & Beauge, Y. (2004). Combustion chamber resonances in direct injection automotive diesel engines: A numerical approach. International Journal of Engine Research, 5(1), 83-91. doi:10.1243/146808704772914264Broatch, A., Margot, X., Gil, A., & Christian Donayre, (JosĂ©). (2007). Computational study of the sensitivity to ignition characteristics of the resonance in DI diesel engine combustion chambers. Engineering Computations, 24(1), 77-96. doi:10.1108/02644400710718583Eriksson, L. J. (1980). Higher order mode effects in circular ducts and expansion chambers. The Journal of the Acoustical Society of America, 68(2), 545-550. doi:10.1121/1.384768Broatch, A., Margot, X., Novella, R., & Gomez-Soriano, J. (2017). Impact of the injector design on the combustion noise of gasoline partially premixed combustion in a 2-stroke engine. Applied Thermal Engineering, 119, 530-540. doi:10.1016/j.applthermaleng.2017.03.081Tutak, W., & Jamrozik, A. (2016). Validation and optimization of the thermal cycle for a diesel engine by computational fluid dynamics modeling. Applied Mathematical Modelling, 40(13-14), 6293-6309. doi:10.1016/j.apm.2016.02.021Payri, F., Benajes, J., Margot, X., & Gil, A. (2004). CFD modeling of the in-cylinder flow in direct-injection Diesel engines. Computers & Fluids, 33(8), 995-1021. doi:10.1016/j.compfluid.2003.09.003Benajes, J., Novella, R., De Lima, D., & Thein, K. (2017). Impact of injection settings operating with the gasoline Partially Premixed Combustion concept in a 2-stroke HSDI compression ignition engine. Applied Energy, 193, 515-530. doi:10.1016/j.apenergy.2017.02.044Lesieur, M., MĂ©tais, O., & Comte, P. (2005). Large-Eddy Simulations of Turbulence. doi:10.1017/cbo9780511755507Pope, S. B. (2004). Ten questions concerning the large-eddy simulation of turbulent flows. New Journal of Physics, 6, 35-35. doi:10.1088/1367-2630/6/1/035Silva, C. F., Leyko, M., Nicoud, F., & Moreau, S. (2013). Assessment of combustion noise in a premixed swirled combustor via Large-Eddy Simulation. Computers & Fluids, 78, 1-9. doi:10.1016/j.compfluid.2010.09.034Jamrozik, A., Tutak, W., Kociszewski, A., & Sosnowski, M. (2013). Numerical simulation of two-stage combustion in SI engine with prechamber. Applied Mathematical Modelling, 37(5), 2961-2982. doi:10.1016/j.apm.2012.07.040Qin, W., Xie, M., Jia, M., Wang, T., & Liu, D. (2014). Large eddy simulation of in-cylinder turbulent flows in a DISI gasoline engine. Applied Mathematical Modelling, 38(24), 5967-5985. doi:10.1016/j.apm.2014.05.004Broatch, A., Margot, X., Novella, R., & Gomez-Soriano, J. (2016). Combustion noise analysis of partially premixed combustion concept using gasoline fuel in a 2-stroke engine. Energy, 107, 612-624. doi:10.1016/j.energy.2016.04.045Torregrosa, A. J., Broatch, A., MartĂ­n, J., & Monelletta, L. (2007). Combustion noise level assessment in direct injection Diesel engines by means of in-cylinder pressure components. Measurement Science and Technology, 18(7), 2131-2142. doi:10.1088/0957-0233/18/7/045Payri, F., Broatch, A., Margot, X., & Monelletta, L. (2008). Sound quality assessment of Diesel combustion noise using in-cylinder pressure components. Measurement Science and Technology, 20(1), 015107. doi:10.1088/0957-0233/20/1/015107Ihlenburg, F. (2003). The Medium-Frequency Range in Computational Acoustics: Practical and Numerical Aspects. Journal of Computational Acoustics, 11(02), 175-193. doi:10.1142/s0218396x03001900Lapuerta, M., Armas, O., & HernĂĄndez, J. J. (1999). Diagnosis of DI Diesel combustion from in-cylinder pressure signal by estimation of mean thermodynamic properties of the gas. Applied Thermal Engineering, 19(5), 513-529. doi:10.1016/s1359-4311(98)00075-1Payri, F., Olmeda, P., MartĂ­n, J., & GarcĂ­a, A. (2011). A complete 0D thermodynamic predictive model for direct injection diesel engines. Applied Energy, 88(12), 4632-4641. doi:10.1016/j.apenergy.2011.06.005Payri, F., Broatch, A., Tormos, B., & Marant, V. (2005). New methodology for in-cylinder pressure analysis in direct injection diesel engines—application to combustion noise. Measurement Science and Technology, 16(2), 540-547. doi:10.1088/0957-0233/16/2/029Shahlari, A. J., Hocking, C., Kurtz, E., & Ghandhi, J. (2013). Comparison of Compression Ignition Engine Noise Metrics in Low-Temperature Combustion Regimes. SAE International Journal of Engines, 6(1), 541-552. doi:10.4271/2013-01-1659Yakhot, V., & Orszag, S. A. (1986). Renormalization group analysis of turbulence. I. Basic theory. Journal of Scientific Computing, 1(1), 3-51. doi:10.1007/bf01061452Redlich, O., & Kwong, J. N. S. (1949). On the Thermodynamics of Solutions. V. An Equation of State. Fugacities of Gaseous Solutions. Chemical Reviews, 44(1), 233-244. doi:10.1021/cr60137a013Issa, R. . (1986). Solution of the implicitly discretised fluid flow equations by operator-splitting. Journal of Computational Physics, 62(1), 40-65. doi:10.1016/0021-9991(86)90099-9Dukowicz, J. K. (1980). A particle-fluid numerical model for liquid sprays. Journal of Computational Physics, 35(2), 229-253. doi:10.1016/0021-9991(80)90087-xReitz, R. D., & Beale, J. C. (1999). MODELING SPRAY ATOMIZATION WITH THE KELVIN-HELMHOLTZ/RAYLEIGH-TAYLOR HYBRID MODEL. Atomization and Sprays, 9(6), 623-650. doi:10.1615/atomizspr.v9.i6.40Babajimopoulos, A., Assanis, D. N., Flowers, D. L., Aceves, S. M., & Hessel, R. P. (2005). A fully coupled computational fluid dynamics and multi-zone model with detailed chemical kinetics for the simulation of premixed charge compression ignition engines. International Journal of Engine Research, 6(5), 497-512. doi:10.1243/146808705x30503Pal, P., Keum, S., & Im, H. G. (2015). Assessment of flamelet versus multi-zone combustion modeling approaches for stratified-charge compression ignition engines. International Journal of Engine Research, 17(3), 280-290. doi:10.1177/1468087415571006Torregrosa, A. J., Broatch, A., Gil, A., & Gomez-Soriano, J. (2018). Numerical approach for assessing combustion noise in compression-ignited Diesel engines. Applied Acoustics, 135, 91-100. doi:10.1016/j.apacoust.2018.02.006Torregrosa, A., Olmeda, P., Degraeuwe, B., & Reyes, M. (2006). A concise wall temperature model for DI Diesel engines. Applied Thermal Engineering, 26(11-12), 1320-1327. doi:10.1016/j.applthermaleng.2005.10.021Broatch, A., Javier Lopez, J., GarcĂ­a-TĂ­scar, J., & Gomez-Soriano, J. (2018). Experimental Analysis of Cyclical Dispersion in Compression-Ignited Versus Spark-Ignited Engines and Its Significance for Combustion Noise Numerical Modeling. Journal of Engineering for Gas Turbines and Power, 140(10). doi:10.1115/1.4040287Molina, S., GarcĂ­a, A., Pastor, J. M., Belarte, E., & Balloul, I. (2015). Operating range extension of RCCI combustion concept from low to full load in a heavy-duty engine. Applied Energy, 143, 211-227. doi:10.1016/j.apenergy.2015.01.03

    A compact dust shell in the symbiotic system HM Sge

    Get PDF
    We present high spatial resolution observations of the mid-infrared core of the dusty symbiotic system HM Sge. The MIDI interferometer was used with the VLT UTs and ATs providing baselines oriented from PA=42&deg; to 105&deg;. The MIDI visibilities are compared with the ones predicted in the frame of various spherical dust shells published in the literature involving single or double dusty shells. The mid-IR environment is unresolved by a 8m telescope and the MIDI spectrum exhibits a level similar to the ISO spectra recorded 10 yr ago. The estimated Gaussian HWHM of the shell of 12AU in the 8-9Ό\mum range, and 18AU in the 11-12Ό\mum range, are much smaller than the angular separation between the Mira and the White Dwarf of 60AU. The discrepancies between the HWHM at different angle orientations suggest an increasing level of asymmetry from 13 to 8Ό\mum. The observations are well fitted by the densest and smallest model published in the literature based on the ISO data, although such a model does not account for the variations of near-IR photometry due to the Mira pulsation cycle suggesting a much smaller optical thickness. These observations also discard the two shells models, developed to take into account the effect of the WD illumination onto the dusty wind of the Mira. These observations show that a high rate of dust formation is occurring in the vicinity of the Mira which seems to be not highly perturbed by the hot companion
    • 

    corecore