134 research outputs found

    K-edge X-ray absorption spectra in transition metal oxides beyond the single particle approximation: shake-up many body effects

    Get PDF
    The near edge structure (XANES) in K-edge X-ray absorption spectroscopy (XAS) is a widely used tool for studying electronic and local structure in materials. The precise interpretation of these spectra with the help of calculations is hence of prime importance, especially for the study of correlated materials which have a complicated electronic structure per se. The single particle approach, for example, has generally limited itself to the dominant dipolar cross-section. It has long been known however that effects beyond this approach should be taken into account, both due to the inadequacy of such calculations when compared to experiment and the presence of shake-up many-body satellites in core-level photoemission spectra of correlated materials. This effect should manifest itself in XANES spectra and the question is firstly how to account for it theoretically and secondly how to verify it experimentally. By using state-of-the-art first principles electronic structure calculations and 1s photoemission measurements we demonstrate that shake-up many-body effects are present in K-edge XAS dipolar spectra of NiO, CoO and CuO at all energy scales. We show that shake-up effects can be included in K-edge XAS spectra in a simple way by convoluting the single-particle first-principles calculations including core-hole effects with the 1s photoemission spectra. We thus describe all features appearing in the XAS dipolar cross-section of NiO and CoO and obtain a dramatic improvement with respect to the single-particle calculation in CuO. These materials being prototype correlated magnetic oxides, our work points to the presence of shake-up effects in K-edge XANES of most correlated transition metal compounds and shows how to account for them, paving the way to a precise understanding of their electronic structure.Comment: 6 pages, 4 picture

    A consistent methodology for the derivation and calibration of a macroscopic turbulence model for flows in porous media

    Get PDF
    This work aims to model turbulent flows in media laden with solid structures according to porous media approach. A complete set of macroscopic transport equations is derived by spatially averaging the Reynolds averaged governing equations. A two-scale analysis highlights energy transfers between macroscopic and sub-filter kinetic energies (dispersive and turbulent kinetic energies). Additional terms coming from the averaging procedure and representing solids/fluid interactions and turbulent contributions are modeled. Connections between turbulence modeling and dispersion modeling are presented. Other closure expressions are determined using physical considerations and spatial averaging of microscopic computations. A special care is given to the calibration methodology for the phenomenological coefficients. Results of the present model are successfully compared to volume-averaged reference results coming from fine scale computations and show significant improvements with respect to previous macroscopic models

    CC9 Livestock-Associated Staphylococcus aureus Emerges in Bloodstream Infections in French Patients Unconnected With Animal Farming

    Get PDF
    We report 4 bloodstream infections associated with CC9 agr type II Staphylococcus aureus in individuals without animal exposure. We demonstrate, by microarray analysis, the presence of egc cluster, fnbA, cap operon, lukS, set2, set12, splE, splD, sak, epiD, and can, genomic features associated with a high virulence potential in human

    Permeability correction factor for fractures with permeable walls

    Get PDF
    Enhanced Geothermal Systems (EGS) are based on the premise that heat can be extracted from hot dry rocks located at significant depths by circulating fluid through fracture networks in the system. Heated fluid is recovered through production wells and the energy is extracted in a heat exchange chamber. There is much published research on flow through fractures, and many models have been developed to describe an effective permeability of a fracture or a fracture network. In these cases however, the walls of the fracture were modelled as being impermeable. In this paper, we have extended our previous work on fractures with permeable walls, and we introduce a correction factor to the equation that governs fracture permeability. The solution shows that the effective fracture permeability for fractures with permeable walls depends not only on the height of the channel, but also on the wall permeability and the wall Reynolds number of the fluid. We show that our solution reduces to the established solution when the fracture walls become impermeable. We also extend the discussion to cover the effective permeability of a system of fractures with permeable walls.R. Mohais, C. Xu, P. A. Dowd, and M. Han

    A recessive form of hyper-IgE syndrome by disruption of ZNF341-dependent STAT3 transcription and activity.

    Get PDF
    Heterozygosity for human () dominant-negative (DN) mutations underlies an autosomal dominant form of hyper-immunoglobulin E syndrome (HIES). We describe patients with an autosomal recessive form of HIES due to loss-of-function mutations of a previously uncharacterized gene, ZNF341 is a transcription factor that resides in the nucleus, where it binds a specific DNA motif present in various genes, including the promoter. The patients\u27 cells have low basal levels of STAT3 mRNA and protein. The autoinduction of STAT3 production, activation, and function by STAT3-activating cytokines is strongly impaired. Like patients with DN mutations, ZNF341-deficient patients lack T helper 17 (T17) cells, have an excess of T2 cells, and have low memory B cells due to the tight dependence of STAT3 activity on ZNF341 in lymphocytes. Their milder extra-hematopoietic manifestations and stronger inflammatory responses reflect the lower ZNF341 dependence of STAT3 activity in other cell types. Human ZNF341 is essential for the transcription-dependent autoinduction and sustained activity of STAT3

    Primary immunodeficiencies associated with eosinophilia

    Full text link

    Boundary conditions at a fluid–porous interface: An a priori estimation of the stress jump coefficients

    Get PDF
    International audienceThe velocity boundary condition that must be imposed at an interface between a porous medium anda free fluid is investigated. A heterogeneous transition zone characterized by rapidly varying properties is introducedbetween the two homogeneous porous and free fluid regions. The problem is solved using the method of matchedasymptotic expansions and boundary conditions between the two homogeneous regions are obtained. The continuityof the velocity is recovered and a jump in the stress built using the viscosity (and not the effective viscosity) appears.This result also provides an explicit dependence of the stress jump coefficient to the internal structure of the transitionzone and its sensitivity to this micro structure is recovere
    • …
    corecore