2,523 research outputs found

    Frustration of decoherence in YY-shaped superconducting Josephson networks

    Full text link
    We examine the possibility that pertinent impurities in a condensed matter system may help in designing quantum devices with enhanced coherent behaviors. For this purpose, we analyze a field theory model describing Y- shaped superconducting Josephson networks. We show that a new finite coupling stable infrared fixed point emerges in its phase diagram; we then explicitly evidence that, when engineered to operate near by this new fixed point, Y-shaped networks support two-level quantum systems, for which the entanglement with the environment is frustrated. We briefly address the potential relevance of this result for engineering finite-size superconducting devices with enhanced quantum coherence. Our approach uses boundary conformal field theory since it naturally allows for a field-theoretical treatment of the phase slips (instantons), describing the quantum tunneling between degenerate levels.Comment: 11 pages, 5 .eps figures; several changes in the presentation and in the figures, upgraded reference

    Reflection Scattering Matrix of the Ising Model in a Random Boundary Magnetic Field

    Get PDF
    The physical properties induced by a quenched surface magnetic field in the Ising model are investigated by means of boundary quantum field theory in replica space. Exact boundary scattering amplitudes are proposed and used to study the averaged quenched correlation functions.Comment: 37 pages (Latex), including 16 figures, one reference adde

    Lifshitz-like systems and AdS null deformations

    Full text link
    Following arXiv:1005.3291 [hep-th], we discuss certain lightlike deformations of AdS5×X5AdS_5\times X^5 in Type IIB string theory sourced by a lightlike dilaton Φ(x+)\Phi(x^+) dual to the N=4 super Yang-Mills theory with a lightlike varying gauge coupling. We argue that in the case where the x+x^+-direction is noncompact, these solutions describe anisotropic 3+1-dim Lifshitz-like systems with a potential in the x+x^+-direction generated by the lightlike dilaton. We then describe solutions of this sort with a linear dilaton. This enables a detailed calculation of 2-point correlation functions of operators dual to bulk scalars and helps illustrate the spatial structure of these theories. Following this, we discuss a nongeometric string construction involving a compactification along the x+x^+-direction of this linear dilaton system. We also point out similar IIB axionic solutions. Similar bulk arguments for x+x^+-noncompact can be carried out for deformations of AdS4×X7AdS_4\times X^7 in M-theory.Comment: Latex, 20pgs, 1 eps fig; v2. references added; v3. minor clarifications added, to appear in PR

    Correlation Functions Along a Massless Flow

    Full text link
    A non-perturbative method based on the Form Factor bootstrap approach is proposed for the analysis of correlation functions of 2-D massless integrable theories and applied to the massless flow between the Tricritical and the Critical Ising Models.Comment: 11 pages (two figures not included in the text), Latex file, ISAS/EP/94/15

    Fermionic field theory for directed percolation in (1+1) dimensions

    Full text link
    We formulate directed percolation in (1+1) dimensions in the language of a reaction-diffusion process with exclusion taking place in one space dimension. We map the master equation that describes the dynamics of the system onto a quantum spin chain problem. From there we build an interacting fermionic field theory of a new type. We study the resulting theory using renormalization group techniques. This yields numerical estimates for the critical exponents and provides a new alternative analytic systematic procedure to study low-dimensional directed percolation.Comment: 20 pages, 2 figure

    PERFORMANCE MEASURES: BANDWIDTH VERSUS FIDELITY IN PERFORMANCE MANAGEMENT

    Get PDF
    Performance is of focal and critical interest in organizations. Despite its criticality, when it comes to human performance there are many questions as to how to best measure and manage performance. One such issue is the breadth of the performance that should be considered. In this paper, we examine the issue of the breadth of performance in terms of measuring and managing performance. Overall, a contingency approach is taken in which the expected benefits and preference for broad or narrow performance measures depend on the type of job (fixed or changeable).bandwidth, fidelity in performance management, performance measures

    Conformal Invariance in (2+1)-Dimensional Stochastic Systems

    Full text link
    Stochastic partial differential equations can be used to model second order thermodynamical phase transitions, as well as a number of critical out-of-equilibrium phenomena. In (2+1) dimensions, many of these systems are conjectured (and some are indeed proved) to be described by conformal field theories. We advance, in the framework of the Martin-Siggia-Rose field theoretical formalism of stochastic dynamics, a general solution of the translation Ward identities, which yields a putative conformal energy-momentum tensor. Even though the computation of energy-momentum correlators is obstructed, in principle, by dimensional reduction issues, these are bypassed by the addition of replicated fields to the original (2+1)-dimensional model. The method is illustrated with an application to the Kardar-Parisi-Zhang (KPZ) model of surface growth. The consistency of the approach is checked by means of a straightforward perturbative analysis of the KPZ ultraviolet region, leading, as expected, to its c=1c=1 conformal fixed point.Comment: Title, abstract and part of the text have been rewritten. To be published in Physical Review E

    Unbounded autocatalytic growth on diffusive substrate: the extinction transition

    Full text link
    The effect of diffusively correlated spatial fluctuations on the proliferation-extinction transition of autocatalytic agents is investigated numerically. Reactants adaptation to spatio-temporal active regions is shown to lead to proliferation even if the mean field rate equations predict extinction, in agreement with previous theoretical predictions. While in the proliferation phase the system admits a typical time scale that dictates the exponential growth, the extinction times distribution obeys a power law at the parameter region considered

    Edge Logarithmic Corrections probed by Impurity NMR

    Get PDF
    Semi-infinite quantum spin chains display spin autocorrelations near the boundary with power-law exponents that are given by boundary conformal field theories. We show that NMR measurements on spinless impurities that break a quantum spin chain lead to a spin-lattice relaxation rate 1/T_1^edge that has a temperature dependence which is a direct probe of the anomalous boundary exponents. For the antiferromagnetic S=1/2 spin chain, we show that 1/T_1^edge behaves as T (log T)^2 instead of (log T)^1/2 for a bulk measurement. We show that, in the case of a one-dimensional conductor described by a Luttinger liquid, a similar measurement leads to a relaxation rate 1/T_1^{edge} behaving as T, independent of the anomalous exponent K_rho.Comment: 4 pages, 1 encapsulated figure, corrected typo

    Integrable versus Non-Integrable Spin Chain Impurity Models

    Full text link
    Recent renormalization group studies of impurities in spin-1/2 chains appear to be inconsistent with Bethe ansatz results for a special integrable model. We study this system in more detail around the integrable point in parameter space and argue that this integrable impurity model corresponds to a non-generic multi-critical point. Using previous results on impurities in half-integer spin chains, a consistent renormalization group flow and phase diagram is proposed.Comment: 20 pages 11 figures obtainable from authors, REVTEX 3.
    corecore