We examine the possibility that pertinent impurities in a condensed matter
system may help in designing quantum devices with enhanced coherent behaviors.
For this purpose, we analyze a field theory model describing Y- shaped
superconducting Josephson networks. We show that a new finite coupling stable
infrared fixed point emerges in its phase diagram; we then explicitly evidence
that, when engineered to operate near by this new fixed point, Y-shaped
networks support two-level quantum systems, for which the entanglement with the
environment is frustrated. We briefly address the potential relevance of this
result for engineering finite-size superconducting devices with enhanced
quantum coherence. Our approach uses boundary conformal field theory since it
naturally allows for a field-theoretical treatment of the phase slips
(instantons), describing the quantum tunneling between degenerate levels.Comment: 11 pages, 5 .eps figures; several changes in the presentation and in
the figures, upgraded reference