272 research outputs found

    Combinatorial Effects of Double Cardiomyopathy Mutant Alleles in Rodent Myocytes: A Predictive Cellular Model of Myofilament Dysregulation in Disease

    Get PDF
    Inherited cardiomyopathy (CM) represents a diverse group of cardiac muscle diseases that present with a broad spectrum of symptoms ranging from benign to highly malignant. Contributing to this genetic complexity and clinical heterogeneity is the emergence of a cohort of patients that are double or compound heterozygotes who have inherited two different CM mutant alleles in the same or different sarcomeric gene. These patients typically have early disease onset with worse clinical outcomes. Little experimental attention has been directed towards elucidating the physiologic basis of double CM mutations at the cellular-molecular level. Here, dual gene transfer to isolated adult rat cardiac myocytes was used to determine the primary effects of co-expressing two different CM-linked mutant proteins on intact cardiac myocyte contractile physiology. Dual expression of two CM mutants, that alone moderately increase myofilament activation, tropomyosin mutant A63V and cardiac troponin mutant R146G, were shown to additively slow myocyte relaxation beyond either mutant studied in isolation. These results were qualitatively similar to a combination of moderate and strong activating CM mutant alleles αTmA63V and cTnI R193H, which approached a functional threshold. Interestingly, a combination of a CM myofilament deactivating mutant, troponin C G159D, together with an activating mutant, cTnIR193H, produced a hybrid phenotype that blunted the strong activating phenotype of cTnIR193H alone. This is evidence of neutralizing effects of activating/deactivating mutant alleles in combination. Taken together, this combinatorial mutant allele functional analysis lends molecular insight into disease severity and forms the foundation for a predictive model to deconstruct the myriad of possible CM double mutations in presenting patients

    The double life of cardiac mesenchymal cells: epimetabolic sensors and therapeutic assets for heart regeneration

    Get PDF
    Organ-specific mesenchymal cells naturally reside in the stroma, where they are exposed to some environmental variables affecting their biology and functions. Risk factors such as diabetes or aging influence their adaptive response. In these cases, permanent epigenetic modifications may be introduced in the cells with important consequences on their local homeostatic activity and therapeutic potential. Numerous results suggest that mesenchymal cells, virtually present in every organ, may contribute to tissue regeneration mostly by paracrine mechanisms. Intriguingly, the heart is emerging as a source of different cells, including pericytes, cardiac progenitors, and cardiac fibroblasts. According to phenotypic, functional, and molecular criteria, these should be classified as mesenchymal cells. Not surprisingly, in recent years, the attention on these cells as therapeutic tools has grown exponentially, although only very preliminary data have been obtained in clinical trials to date. In this review, we summarized the state of the art about the phenotypic features, functions, regenerative properties, and clinical applicability of mesenchymal cells, with a particular focus on those of cardiac origin

    Peptidyl-prolyl isomerases : A full cast of critical actors in cardiovascular diseases

    Get PDF
    Peptidyl-prolyl cis-trans-isomerases are a highly conserved family of immunophilins. The three peptidyl-prolyl cis-trans-isomerase subfamilies are cyclophilins, FK-506-binding proteins, and parvulins. Peptidyl-prolyl cis-trans-isomerases are expressed in multiple human tissues and regulate different cellular functions, e.g. calcium handling, protein folding, and gene expression. Moreover, these subfamilies have been shown to be consistently involved in several cardiac and vascular diseases including heart failure, arrhythmias, vascular stenosis, endothelial dysfunction, atherosclerosis, and hypertension. This review provides a concise description of the peptidyl-prolyl cis-trans-isomerases and presents an incisive selection of studies focused on their relationship with cardiovascular diseases

    Doxorubicin upregulates CXCR4 via miR-200c/ZEB1-dependent mechanism in human cardiac mesenchymal progenitor cells.

    Get PDF
    Doxorubicin (DOXO) treatment is limited by its cardiotoxicity, since it causes cardiac-progenitor-cell depletion. Although the cardioprotective role of the stromal cell-derived factor-1/C-X-C chemokine receptor type 4 (SDF1/CXCR4) axis is well established, its involvement during DOXO-induced cardiotoxicity has never been investigated. We showed that in a mouse model of DOXO-induced cardiomyopathy, CXCR4 <sup>+</sup> cells were increased in response to DOXO, mainly in human cardiac mesenchymal progenitor cells (CmPC), a subpopulation with regenerative potential. Our in vitro results showed a CXCR4 induction after 24 h of DOXO exposure in CmPC. SDF1 administration protected from DOXO-induced cell death and promoted CmPC migration. CXCR4 promoter analysis revealed zinc finger E-box binding homeobox 1 (ZEB1) binding sites. Upon DOXO treatment, ZEB1 binding decreased and RNA-polymerase-II increased, suggesting a DOXO-mediated transcriptional increase in CXCR4. Indeed, DOXO induced the upregulation of miR-200c, that directly targets ZEB1. SDF1 administration in DOXO-treated mice partially reverted the adverse remodeling, decreasing left ventricular (LV) end diastolic volume, LV ejection fraction and LV anterior wall thickness in diastole, recovering LV end systolic pressure and reducing±dP/dt. Moreover, in vivo administration of SDF1 partially reverted DOXO-induced miR-200c and p53 protein upregulation in mouse hearts. In addition, downmodulation of ZEB1 mRNA and protein by DOXO was significantly increased by SDF1. In keeping, p21 mRNA, that is induced by p53 and inhibited by ZEB1, is induced by DOXO treatment and is decreased by SDF1 administration. This study showed new players of the DOXO-induced cardiotoxicity, that can be exploited to ameliorate DOXO-associated cardiomyopathy

    Telomerase Mediates Vascular Endothelial Growth Factor-dependent Responsiveness in a Rat Model of Hind Limb Ischemia *

    Get PDF
    Telomere dysfunction contributes to reduced cell viability, altered differentiation, and impaired regenerative/proliferative responses. Recent advances indicate that telomerase activity confers a pro-angiogenic phenotype to endothelial cells and their precursors. We have investigated whether telomerase contributes to tissue regeneration following hind limb ischemia and vascular endothelial growth factor 165 (VEGF(165)) treatment. VEGF delivery induced angiogenesis and increased expression of the telomerase reverse transcriptase (TERT) and telomerase activity in skeletal muscles and satellite and endothelial cells. Adenovirus-mediated transfer of wild type TERT but not of a dominant negative mutant, TERTdn, significantly induced capillary but not arteriole formation. However, when co-delivered with VEGF, TERTdn abrogated VEGF-dependent angiogenesis, arteriogenesis, and blood flow increase. This effect was paralleled by in vitro evidence that telomerase inhibition by 3'-azido-3'-deoxythymidine in VEGF-treated endothelial cells strongly reduced capillary density and promoted apoptosis in the absence of serum. Similar results were obtained with adenovirus-mediated expression of TERTdn and AKTdn, both reducing endogenous TERT activity and angiogenesis on Matrigel. Mechanistically, neo-angiogenesis in our system involved: (i) VEGF-dependent activation of telomerase through the nitric oxide pathway and (ii) telomerase-dependent activation of endothelial cell differentiation and protection from apoptosis. Furthermore, detection of TERT in activated satellite cells identified them as VEGF targets during muscle regeneration. Because TERT behaves as an angiogenic factor and a downstream effector of VEGF signaling, telomerase activity appears required for VEGF-dependent remodeling of ischemic tissue at the capillaries and arterioles level

    Estrogen-dependent dynamic profile of eNOS-DNA associations in prostate cancer

    Get PDF
    In previous work we have documented the nuclear translocation of endothelial NOS (eNOS) and its participation in combinatorial complexes with Estrogen Receptor Beta (ERβ) and Hypoxia Inducible Factors (HIFs) that determine localized chromatin remodeling in response to estrogen (E2) and hypoxia stimuli, resulting in transcriptional regulation of genes associated with adverse prognosis in prostate cancer (PCa). To explore the role of nuclear eNOS in the acquisition of aggressive phenotype in PCa, we performed ChIP-Sequencing on chromatin-associated eNOS from cells from a primary tumor with poor outcome and from metastatic LNCaP cells. We found that: 1. the eNOS-bound regions (peaks) are widely distributed across the genome encompassing multiple transcription factors binding sites, including Estrogen Response Elements. 2. E2 increased the number of peaks, indicating hormone-dependent eNOS re-localization. 3. Peak distribution was similar with/without E2 with ≈ 55% of them in extragenic DNA regions and an intriguing involvement of the 5′ domain of several miRs deregulated in PCa. Numerous potentially novel eNOS-targeted genes have been identified suggesting that eNOS participates in the regulation of large gene sets. The parallel finding of downregulation of a cluster of miRs, including miR-34a, in PCa cells associated with poor outcome led us to unveil a molecular link between eNOS and SIRT1, an epigenetic regulator of aging and tumorigenicity, negatively regulated by miR-34a and in turn activating eNOS. E2 potentiates miR-34a downregulation thus enhancing SIRT1 expression, depicting a novel eNOS/SIRT1 interplay fine-tuned by E2-activated ER signaling, and suggesting that eNOS may play an important role in aggressive PCa
    corecore