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Abstract Peptidyl-prolyl cis-trans-isomerases are a highly conserved family of immunophilins. The three peptidyl-prolyl
cis-trans-isomerase subfamilies are cyclophilins, FK-506-binding proteins, and parvulins. Peptidyl-prolyl cis-trans-
isomerases are expressed in multiple human tissues and regulate different cellular functions, e.g. calcium handling,
protein folding, and gene expression. Moreover, these subfamilies have been shown to be consistently involved in
several cardiac and vascular diseases including heart failure, arrhythmias, vascular stenosis, endothelial dysfunction,
atherosclerosis, and hypertension. This review provides a concise description of the peptidyl-prolyl cis-trans-
isomerases and presents an incisive selection of studies focused on their relationship with cardiovascular diseases.
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1. Introduction
Cardiovascular diseases (CVDs) are a broad spectrum of pathologies.
Presently, CVDs cause over 4 million deaths per year and remain the
leading cause of approximately half of all deaths in Europe.1 In the last
10 years, scientific research has highlighted the relevance of a specific
protein family, the peptidyl-prolyl cis-trans-isomerases (PPIases), in a
variety of CVDs.

PPIases are immunophilins, which catalyze the isomerization of peptide
bonds from trans to cis conformation to accelerateprotein folding.2,3 They
have specificcatalytic isomerase activityat the level ofX-Propeptidebond
(X represents any amino acid, a.a.). PPIases comprise several protein sub-
families, which are well conserved in all organisms.4 Several of these were
discovered because of their high specific affinity for immunosuppressant
drugs, such as cyclosporin A (CSA), tacrolimus (FK-506), and sirolimus
(rapamycin), which are inhibitors of PPIase enzymatic function.5–7

Depending on drug-binding abilities, PPIases showing affinity with CSA
have been classified as cyclophilins (Cyps),2,8 while molecules sensitive
to tacrolimus and sirolimus have been named FK-506-binding proteins
(FKBPs).9–11 Ultimately, the number of proteins encompassed by the
PPIase family is growing and many have no affinity to immunosuppressive
drugs, such as the peptidyl-prolyl cis-trans-isomerase NIMA-interacting 1
(Pin1), a member of the parvulin (Pars) family of PPIases. Besides not
having affinity with immunosuppressive drugs, Pars do not show a high

degree of sequence homology with other subfamilies of PPIases, apart
from their catalytic domain.12 All three PPIase subfamilies play a central
role in the regulation of several physiological functions and a wide spec-
trumofdiseaseswithdifferent pathologicalmechanisms.This reviewhigh-
lights the main features of PPIases and clarifies their role in CVDs.

2. Cyclophilins
Cyps are a highly conserved protein subfamily that includes 18 isoen-
zymes encoded by 17 genes. Although the function of most cyclophilin
isoforms is unknown, six are implicated in CVDs (summarized in
Table 1).

2.1 Cyclophilin A
CypA was the first PPIase to be discovered.13 It is the most abundant Cyp
expressed in all tissues and localizes to the cytosol, nucleus, and extracel-
lular space.14–16 Many biological activities have been reported for CypA
which converge on CypA acting as a key protein involved in protein
folding, trafficking, and assembly, immunemodulation, and cell signalling.17

CypA was identified as the primary cytosolic-binding protein of the im-
munosuppressive drug CSA.18,19 In mammals, the CSA-CypA complex
binds to and inhibits calcineurin, a calcium-calmodulin-activated serine/
threonine-specific phosphatase.20 Calcineurin inhibition blocks nuclear
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factor of activated T cells (NFAT) translocation from the cytosol to the
nucleus, thus preventing the transcription of genes encoding cytokines,
e.g. IL-2. We and others have provided evidence that CypA is secreted
in response to inflammatory stimuli such as reactive oxygen species
(ROS), hypoxia, and infection.21–24 Secreted CypA, partially through
CD147, acts as a paracrine and autocrine factor that mediates cell-to-cell
communication.25 In fact, extracellularCypA inducesendothelial cell (EC)
dysfunction,21,26 vascular smooth muscle cell (VSMC), and fibroblast pro-
liferation, and promotes cardiomyocyte hypertrophy16,27 (Figure 1).
Furthermore, extracellular CypA is a potent chemoattractant for
inflammatory cells.23,28 CypA has been implicated in the following path-
ologies: viral infections,29 neurodegeneration,30 cancer,31 rheumatoid
arthritis,32 sepsis,33 asthma,34 periodontitis,35 and ageing.36

Recently, we havedemonstrated the involvementof both intracellular
and extracellular CypA in several CVDs. Using a complete carotid liga-
tion model in wild-type (WT), CypA knockout (CypA2/2), and CypA
overexpressing mice (specifically in VSMCs), we understood that
CypA is critically involved in ‘vascular remodelling’ (neointima formation
as well as medial and adventitial thickening).16 Additionally, we demon-
strated that deletion of CypA in ApoE2/2 mice prevents the formation
of abdominal aortic aneurysm (AAA)37 and cardiac hypertrophy27 in
response to angiotensin II infusion and the development of athero-
sclerosis in mice fed a high-fat diet.26 Mechanistic studies revealed that
deletion of CypA in all models reduced inflammation, oxidative stress,
and extracellular matrix degradation.38 Seizer et al.39 reported that
CypA is involved in myocardial ‘ischaemia and reperfusion (I/R) injury’
by the regulation of macrophage and neutrophil recruitment into the
damaged tissue. CypA was also implicated in ‘arterial thrombosis’ by a
mechanism involving the regulation of Ca2+ in platelets.40 The involve-
ment of CypA in the pathogenesis of hypertension has been suggested
by the finding that CypA regulates the activity of the atrial natriuretic
factorand its receptor, themembrane-boundguanylatecyclase-A,which
regulates blood pressure.41 Consistently, our studies demonstrated that
CypA modulates endothelial nitric oxide synthase (eNOS) expression, a
critical protein for nitric oxide (NO) generation and blood pressure
regulation.26 A clear involvement of CypA in pulmonary hypertension
(PH) was found by a mechanism of ERK1/2 activation and secretion of
cytokines/chemokines and growth factors, e.g. PDGF-BB.42 Interesting-
ly, high plasma levels of CypA, which predicted poor prognosis, were
found inPHpatients.Additionally, CypAhasbeenproposed as avaluable
biomarker for coronary artery disease (CAD),43,44 essential hyperten-
sion,45 and type-2 diabetes.46 Hence, the development of drugs blocking
itsdeleteriouseffectsmayoffer a successful novel approach for the treat-
ment of cardiovascular pathologies.

2.2 Cyclophilin B
CypB is an abundant protein expressed in all tissues, at levels lower than
CypA,47 and shares 65% sequence homology with CypA. It localizes
within the endoplasmic reticulum (ER), nucleus, and extracellular
space. The major functions of CypB were found to be related to the
control of ER redox homeostasis,48 collagen folding,49 ribosomebiogen-
esis,50 Ca2+ homeostasis,51 and prolactin signalling.52 Both anti- and
pro-inflammatory effects were reported for CypB. For instance, CypB
was demonstrated as an essential protectant against ROS53 and
pro-inflammatory stimuli.54,55 Conversely, extracellular CypB, like
CypA, was found to induce the chemotaxis of inflammatory cells into
damaged tissues.23,28,56,57 In particular, CypB induced integrin-mediated
cell adhesion by its interaction with CD147, CD98, and beta-1..
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integrins,58 which was dependent on protein kinase (PK) C-delta
activation and was critical for ERK1/2-mediated signalling. CypB has
been associated with osteogenesis imperfecta,49,59 cancer,55,60,61 CMV
infection,62,63 HIV,64 neurodegeneration,65 asthma,34 and ageing.66

A study by Kainer and Doris67 suggested the importance of CypB in
hypertensionas theyshowed increased CypB levels in the renalproximal
tubules of spontaneous hypertensive rats (SHR). These data indicate
that CypB may participate in the abnormal functioning of renal
transport-epithelium in SHR. Moreover, the beneficial effect of shock
wave therapy (SWT) in ‘ischaemic heart failure’ (HF) was proposed to
be mediated by CypB in parallel with Toll-like receptor 3 activation in
ECs.68 These molecular events are the basis for the pro-inflammatory
response characteristic of the early response to SWT. The involvement
of CypB in cardiovascular pathologies was also suggested by Berk and
collaborators whom identified CypB in conditioned medium from
VSMCs treated with a ROS generator (LY83583).56 This secreted
CypB mediated ROS-induced activation of ERK1/2 and regulated the
effects of ROS on vascular function.

2.3 Cyclophilin C
CypC differs from CypA and CypB as it displays a restricted tissue distri-
bution, with the most abundant expression observed in the kidney.69

CypC localizes in the ER, Golgi, and extracellular space,70,71 is inhibited

by CSA,72 regulates ER redox homeostasis,48 and degrades DNA
in vitro.73 Interestingly, CypC associates with a secreted glycoprotein,
CypC-associated protein (CypCAP)74 which modulates macrophage ac-
tivation (via NFAT),75 endotoxin signalling,76 and metalloproteinase-13
expression.77

Interestingly, Shimizu et al.,78 by modelling middle cerebral artery oc-
clusion (MCAO) ischaemia in rat, reported increased expression of
CypC and CyCAP predominantly in microglia of the ischaemic core 7
days after MCAO. Although the cellular role of the proteins remains
somewhat unclear, the authors suggested that CypC and CyCAP
might participate in neuroprotection by modulating neuroinflammation.

2.4 Cyclophilin D
CypD is expressed in all human cell types, however at lower levels com-
pared with CypA.79 In light of its mitochondrial targeting,80 CypD is
known to play a pivotal role in regulating mitochondrial permeability
transition pore (mPTP) opening and mitochondrial Ca2+ homeostasis
control, ensuring optimal metabolic function81,82 and appropriate cell
death activation83– 86 (Figure 2). The hypothesis that CypD contributes
to mPTP opening has been corroborated by genetic studies demonstrat-
ing that CypD deficiency reduces the propensity of the mPTP to
open83–85,87 while overexpression increases opening.88,89 Recent inves-
tigations revealed that CypD is involved in muscular dystrophy,90,91

Figure 1 Cellular effects of CypA. CypA modulates different cardiovascular cell functions. Particularly, CypA, by activating the signalling proteins
depicted in the figure, provokes endothelial dysfunction, increases proliferation of vascular smooth muscle cells and fibroblasts, acts as chemoattractant
mediator for monocytes and other inflammatory cells, and stimulates cardiomyocyte hypertrophy.
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Alzheimer’s disease,92,93 Parkinson’s disease,94 multiple sclerosis,95 and
ageing.96

Numerous studies utilizing CypD2/2 mice determined that CypD
knockout provides protection in several I/R models, including injury to
the heart,83,85,97,98 brain,84 and kidney.99,100 However, some factors,
such as duration of ischaemia101 or age,102 were shown to shift CypD
from a pro-survival protein to a cell death mediator. A cardioprotective
effect of CypD knockdown was also shown using a CypD-siRNA-based
approach followed by two-photon imaging in perfused rat hearts sub-
jected to I/R injury.103 Furthermore, mitochondrial-targeted CSA con-
sistently improved cytoprotection in isolated rat cardiomyocytes
subjected to transient glucose and oxygen deprivation, a pseudo-I/R
model.104 Interesting results were also found in a HF model where
mice lacking CypD showed decreased infarct size and adverse left ven-
tricular (LV) remodelling in addition to improved heart function after
myocardial infarction (MI).105 Moreover, loss of CypD blocked Ca2+-
influx-induced necrosis of cardiomyocytes, isoproterenol-induced

premature cell death, and HF.106 Surprisingly, decreased cytoprotection
was observed in CypD2/2 mice subjected to ischaemic precondition-
ing.107 Similar negative effects were observed in a model of pressure
overload-induced HF.81 In fact, these mice exhibited substantially
greater cardiac hypertrophy, fibrosis and reduced myocardial function
compared with WT mice. Even more remarkably, physiological exercise
(swimming) in CypD2/2 mice worsened cardiac hypertrophy in com-
parison to control mice. Mechanistically, the maladaptive cardiac pheno-
type of CypD2/2 mice was associated with an alteration in
mPTP-mediated Ca2+-efflux, resulting in elevated levels of mitochon-
drial matrix Ca2+ and enhanced activation of Ca2+-dependent dehydro-
genases. This alteration, in turn, led to increased glucose oxidation
relative to fatty acid, thereby limiting the metabolic flexibility of the
heart that is critically involved in compensation during stress. The in-
volvement of CypD in metabolic pathways was confirmed recently by
Menazza et al.82 who used proteomic and metabolomic analysis to
show that CypD2/2 hearts have altered levels of proteins involved in

Figure 2 Intracellular role of CypD in heart failure. Mitochondrial calcium (Ca2+, blue dots) concentration overload is the stimulus required for
CypD-mPTP coupling. This provokes mPTP opening, Ca2+ release into the cytoplasm, and subsequent mitochondrial-mediated process leading to
cardiac cell death.
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the Krebs cycle, branch chain a.a. degradation, and pyruvate metabolism.
CypD was also implicated in platelet activation and arterial throm-
bosis.108 In fact, in an embolic-stroke model, thrombosis was found to
be markedly accelerated in CypD-deficient mice. Other studies asso-
ciated CypD with atherosclerosis and diabetes. Genetic ablation of
CypD in adult mice maintained on a high-fat diet, normalized glucose
and insulin responses to acute glucose challenge, and prevented diabetes
in Pdx1-deficient mice.109 Thus, CypD is engaged in many cardiovascular
pathologies, likely due to its critical role in the regulation of the mPTP
which underpins metabolism and cell death.

2.5 Cyclophilin J and cyclophilin 40
CypJ is a novel member of the Cyp family which shares 50% of its se-
quence identity with CypA. The biological functions of CypJ are still
unclear. Studies demonstrated that CypJ is involved in cancer biology,
e.g. CypJ overexpression up-regulates drug resistance-related genes
and may play a role in the clinical resistance to chemotherapy.110 It
was reported that CypJ gene expression may be correlated with the
development of human glioma and might control the conformation
of apoptin, a pro-apoptotic protein in tumour cells.111

Cyp40 is a large ubiquitously expressed protein with an
immunophilin-like domain together with a conserved tetratricopeptide
repeat (TPR) domain which is involved in protein interaction.112 Cyp40
localizes predominantly to the nuclei. However, evidence of diffuse
staining within the cytoplasm has been reported.113 Cyp40 contributes
to protein folding, ligand binding, and glucocorticoid-, estrogen-,
progesterone-, and aryl-receptor signalling.114 – 117 Interestingly,
Cyp40 regulates the ATPase activity of heat shock protein 90 (Hsp90)
favouring assembly into chaperone protein-folding machinery.118 Add-
itionally, Cyp40 is required for the activity of microRNAs in Arabidopsis
thaliana and may chaperone Argonaute1 (AGO1) or a protein that is
critical for AGO1 function (R.S. Poethig, personal communication).119

Intriguingly, either the up-regulation of Cyp40 gene expression or loss
of function might have pro-tumorigenic effects.120 – 122 Moreover,
Cyp40 was altered in prenatal alcohol-exposed mice suggesting its in-
volvement in learning deficits.123

CypJ and Cyp40 were found to be implicated in the congenital heart
defects observed in helicase-like transcription factor (Hltf) null mice124

which die a few hours after birth because of reduced cardiac output.
A genome-wide transcriptome profiling of Hltf null post-partum hearts
revealed that CypJ and Cyp40 were down-regulated 2.57- and
2.71-fold, respectively. Although more studies are necessary, these
results link CypJ and Cyp40 activity to heart development and cardiac
functions.

3. FK-506-binding proteins
The FKBP subfamily includes .20 members which are named on the
basis of their molecular weight. A number of FKBP genes have been
cloned, but few cases suggest a specific cellular function.6 FKBPs asso-
ciated with CVDs are summarized in Table 1.

3.1 FKBP12
FKBP12 is one of the smallest and most extensively studied FKBP iden-
tified to date.125 FKBP12 displays an overall cytoplasmic and sarcoplas-
mic reticulum (SR) expression profile and is strongly involved in
protein–protein interactions.126 FKBP12 binds both isoforms of ryano-
din receptors (RyR1 and RyR2), with higher selectivity for RyR1 which is
mainly expressed in skeletal muscle. FKBP12-RyR1 binding induces

allosteric mechanisms to stabilize the closed-channel state.127 –129 Rapa-
mycin and FK-506 inhibit FKBP12-RyRs binding. Further, FKBP12 also
interacts with inositol trisphosphate receptors via PKA phosphoryl-
ation. Furthermore, FKBP12 interacts and inhibits calcineurin and
mTOR126,130 –133 which limit T-cell translocation toward inflammatory
loci by inhibiting cytokine production, e.g. IL-2.130

FKBP122/2 mice die in utero, due to cardiac abnormalities including:
severe dilated cardiomyopathy, hypertrabeculation, ventricular non-
compaction, and ventricular septal defects, suggesting an essential
physiological function of FKBP12 in cardiac development.134,135

However, further experiments highlighted the important role for
FKBP12 in the regulation of ionic currents such as Na+, voltage-
dependent K+, transient outward K+, sustained K+, L-type and transient
Ca2+ currents.136 In light of this regulation, FKBP12 was found to be a
critical regulator of heart rhythm. In fact, Maruyama et al. has illustrated
the role of FKBP12 in cardiac arrhythmia using two different approaches:
mice overexpressing FKBP12 and a conditional FKBP12 knockout model
(cardiomyocyte restriction under the control of alpha-myosin heavy
chain). In both models a significantly enlarged heart, related to the dys-
regulation of the voltage-gated sodium current I(Na), was observed.136

In 2011, Chiasson et al. showed that FKBP12 deficiency leads to the de-
velopment of hypertension.137 Consistently, immunosuppressive drugs
inhibiting FKBP12 (and also FKBP12.6) were able to cause arterial hyper-
tension, reducing vasodilation and also acting on vasoconstriction.138

3.2 FKBP12.6
FKBP12.6 shares 85% sequence homology with FKBP12126,139 and also
contains a single FK-506-binding domain. FKBP12.6 plays an important
role in RyR2 stabilization140,141 and colocalizes with RyR2 in the
heart142 and vascular tissues, where it is the predominant isoform.143

FKBP12.6-immunosuppressant drug complexes inhibit calcineurin130,131

and bind mTOR,132,133 inducing the previously mentioned inhibitory
effects on cytokine production and cytotoxic T-cell prolifer-
ation.130,132,133

The main mechanism explaining the involvement of FKBP12.6 in
several CVDs is its role in the regulation of intracellular Ca2+ handling.
During HF aetiology, PKA hyperphosphorylates RyR2, this in turn
leads to detachment of FKBP12.6 from RyR2, negative feedback for
FKBP12.6 expression, and defective Ca2+ channel function
(Figure 3).141,144 – 148 Indeed, Hu et al. demonstrated reduced expression
of FKBP12.6, RyR2, and SERCA2a in a rat model of HF, showing
the contribution of Ca2+ leakage and reduced Ca2+ uptake to the devel-
opment of HF.144 Furthermore, FKBP12.6 plays an important role in
several arrhythmogenic diseases, such as atrial fibrillation (AF),149– 151

cathecolaminergic polymorphic ventricular tachycardia (CPVT),152

and arrhythmogenic right ventricular cardiomyopathy (ARVC).153,154

Hyperphosphorylated RyR2 were isolated from the atria of canines
affected by AF.149,150 Atrial cardiomyocytes isolated from FKBP12.6-
deficient mice showed enhanced SR Ca2+ leakage, in addition to an
increased propensity for developing AF.151 PKA-induced RyR2 hyper-
phosphorylation was also highlighted in cardiac RyR2 of diabetic rats
where FKBP12.6 levels were depleted.155 Moreover, Ca2+ sparks
showed a time-dependent decay together with progression of diabetic
cardiomyopathy potentially due to the alteration of FKBP12.6
levels.156 Lehnart et al.157 have shown SR Ca2+ leakage during diastole
in FKBP12.62/2 mice, implicating FKBP12.6 deficiency in triggering
cardiac arrhythmias. In 2008, a conditional cardiac-specific overexpres-
sion of FKBP12.6 demonstrated that increased FKBP12.6-RyR2 binding
prevents stress-evoked ventricular tachycardia in normal hearts
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potentially by reducing diastolic SR Ca2+ leakage.146,152,158 Thus, the
FKBP12.6-RyR2 complex is an evident target for future pharmacological
treatments of ventricular tachycardia.146 Indeed, decreased FKBP12.6
expression has been linked to the increased probability of RyR2 in the
open-channel state in naturally occurring canine models of ARVC.
However, sequence analysis of the canine FKBP12.6 promoter regions
did not identify any mutations,153,154 indicating that FKBP12.6 is not an
ARVC-associated gene, despite PPIase involvement in the pathological
process. Fauconnier et al. demonstrated that FKBP12.6 expression
was down-regulated, resulting in Ca2+ leakage in the ‘mdx’ mouse
model. These results suggest that FKBP12.6 is implicated in the arrhyth-
mogenic events related to muscular dystrophy.159 Liu et al.160 generated
a FKBP12.62/2 mouse model with a conditional expression of
FKBP12.6 in heart tissue which exhibited the rescue of the cardiac
hypertrophic phenotype through reduced abnormal calcium release.
More controversial results stem from the cardiac effects of FKBP12.6
overexpression. Some authors have provided results showing that

FKBP12.6 overexpression leads to hypertrophy and hyperplasticity,
with increased activation of p38 MAPK and ERK1/2 and levels of apop-
totic factors.161 Conversely, other studies have shown a protective
effect of FKBP12.6 overexpression on LV hypertrophy progression in
hypertensive mice.158

3.3 FKBP6
FKBP6, the most recently discovered member of the FKBP subfamily of
immunophilins, has a three-unit TPR motif at its C-terminal which is es-
sential for mediating protein–protein interactions and the assembly of
protein complexes.162,163 FKBP6 has a nuclear intracellular localization
with an expression level similar to that of other FKBPs; higher levels in
heart and skeletal muscle, and lower levels in the brain.112

In 2004, a segment of murine chromosome 12, which includes the
FKBP6 gene, was shown to correspond to a region which is deleted in
Williams–Beuren Syndrome (WBS), a disease characterized by con-
genital cardiovascular anomalies.164 Hemizygosity of the deleted genes

Figure 3 The role of FKBP12.6 in calcium-ion homeostasis. FKBP12.6 plays an essential role in the stabilization of the tetrameric RyR2 located in the
membrane of the sarcoplasmic reticulum. In physiological conditions, four FKBP12.6 molecules are bound to RyR2 (one per subunit), thus instigating
the channel closed state. In pathological conditions, FKBP12.6 uncouples from RyR2 subunits (concomitant with FKBP12.6 down-regulation), inducing
the channel open state, thus provoking Ca2+ leakage and subsequent cytoplasmic overload.
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in WBS, and possibly also the FKBP6 gene, is responsible for supravalv-
ular aortic stenosis (SVAS), which involves ascending aortic branch nar-
rowing, as well as connective tissue manifestations.165 In fact, a SVAS
phenotype with concomitant deficits in the ELN, GTF2IRD1, and
FKBP6 genes has been reported in three WBS patients.166

4. Parvulins
Pars are a PPIase subfamily, which show no significant sequence hom-
ology with other PPIases12 and show no affinity for immunosuppressant
drugs. There are two human Pars, Pin1 and Pin14. To date, only Pin1 is
linked to CVDs (Table 1).

4.1 Pin1
The PPIase domain of Pin1 is a rare example of high specificity in sub-
strate recognition as binding requires a ‘phospho-X-Pro’ a.a. sequence,
where phospho-X may be phospho-serine (p-Ser) or phospho-
threonine (p-Thr).167 Pin1 is a nuclear protein, and it is involved in cell
cycle progression167,168 and in the control of oncogenic pathways.169

In particular, Lv et al.170,171 provided in vitro evidence on the involve-
ment of Pin1 signalling in VSMC cell cycle progression and apoptosis
(Figure 4). Since post-injury VSMC apoptosis may limit neointima forma-
tion, these resultsunderline apotentially critical roleofPin1 in restenosis
after endovascular damage. Recent data have shown that reduced Pin1
expression in VSMCs treated with nectandrin B (a potent eNOS activa-
tor) blocks cell proliferation through stimulation of the adenosine
monophosphate-activated protein kinase pathway.172 In 2008, the inter-
action between Pin1 and inducible nitric oxide synthase (iNOS), an im-
portant endothelial inflammation mediator, was discovered. Given the
high sequence homology between iNOS and eNOS, Ruan et al.173

demonstrated the phosphorylation-dependent interaction of Pin1
with eNOS, resulting in Pin1-induced eNOS inactivation due to con-
formational changes. This inactivation was proposed to be mediated
by either direct impairment of the eNOS catalytic site or indirectly

by making eNOS more or less susceptible to phosphorylation/depho-
sphorylation and enzyme degradation.173 Thus, Pin1 activity can be
easily considered as an ‘on-off’ switch where the activity of downstream
proteins, such as phosphatases, depend on its function.174 Ruan et al.
showed impaired NO production due to increased Pin1; however,
Chiasson et al.175 uncovered a concerted down-regulation of NO and
Pin1. Furthermore, treatment with juglone (a specific Pin1 inhibitor)
or Pin1 gene deletion caused both hypertension and endothelium dys-
function (phosphorylated eNOS and decreased NO production) in
mice.175 Moreover, Paneni et al. have recently shown that Pin12/2 dia-
betic mice were protected against endothelial impairment in a hypergly-
caemic setting. Pin1 expression and activity increased specifically in EC
during hyperglycaemia, which plays a key role in triggering diabetic vas-
cular disease. Indeed, Pin1 facilitates p66Shc mitochondrial translocation,
inducing ROS production, while impairing NO availability.176 Recently, it
has been noted that Pin12/2 mice were protected from pressure
overload-induced cardiac hypertrophy. However, surprisingly, cardio-
myocytes overexpressing Pin1 also displayed resistance to hyper-
trophy.177 To reconcile these paradoxical findings, the study found
that Pin1 overexpression reduces MEK activation via inhibitory
RafSer259 autophosphorylation, thus leading to an overall decrease in
hypertrophic signalling. Recently, statins have been shown to exert
their pleiotropic antihypertrophic effect partly through Pin1 inactiva-
tion.178 Given these experimental findings, it can be suggested that
Pin1 may play a significant role in CVD by acting as a regulator of NOS
and hypertrophic cell signals. However, more studies are necessary to
elucidate a putative strategy for Pin1-targeted drug therapy.

5. Conclusion and clinical
perspectives
PPIases areaclassof proteins thatplayacentral role in multiple biological
processes, such as protein folding, trafficking, and assembly, as well as

Figure 4 Cellular effects of Pin1 on vascular remodelling. Pin1 deficiency in vascular smooth muscle cells determines both cell cycle arrest and enhance-
ment of apoptosis. These effects are mediated by down-regulation of cyclin D1, beta-catenin, CDK4, increased Bax, released cytochrome-C, and activation
of caspase-3 and -9.
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intracellular calcium handling, chemotaxis, and cell cycle progression. In
particular, there is a vast amount of information on individual members
of this family of proteins in the development of several CVDs, such as
vascular stenosis, hypertension, atherosclerosis, cardiac hypertrophy,
arrhythmias, ischaemic and non-ischaemic cardiomyopathy, and HF.
The mechanisms underlying this involvement are related to their
strong association with key functional regulators of the cardiovascular
system, including eNOS, scavenger receptors, calcineurin, RyR, inositol
trisphosphate receptor, and mTOR. In spite of the recent advances on
the role of PPIases in the cardiovascular field, several aspects related
to PPIases pathophysiological function in vitro and in vivo remain poorly
understood. Therefore, a detailed analysis of their interaction with crit-
ical molecular partners and/or receptors in addition to characterization
of the signalling pathways may shed light on this protein family.

It is important to point out that some controversies exist between the
different classes of PPIases. For instance, while Cyps and Pin1 loss pre-
vents several CVD, FKBP12.6 deficiency leads to AF and cardiac arrhyth-
mias. Even within the same subfamily, some contrasting results have
come to light depending on cardiac disease type. An example is
offered by CypD knockdown which provides cardioprotection follow-
ing I/R injury while a maladaptive cardiac phenotype is evident in HF.
Another point that should be considered regarding the extracellular
PPIases is the dose-dependent effect. Specifically, studies in cultured
ECs have shown that exogenously administeredCypA at lowconcentra-
tions enhances cell proliferation, capillary-like structure development,
migration, invasive properties as well as MMP-2 secretion. In contrast,
at high concentrations, CypA inhibits HUVEC migration and viability.179

In light of these considerations, future investigations should be
focused on finding inhibitors targeting specific PPIases and in well-
characterized disease models. The achievement of the drug specificity
for homogenous protein families is a very difficult task and requires a
concerted effort between medicinal chemistry as well as of the specific
biochemical and pharmacological experts. Indeed, currently many
efforts are focused on the development of novel PPIase inhibitors by
intelligent structure-based drug design methodologies.

To date, various drugs targeting these proteins have been discovered
comprising FK506, sirolimus/rapamycin, cyclosporine, and tacrolimus.180

Several FKBP-binding macrocyclic drugs, everolimus, zotarolimus, and
temsirolius are in Phase III trials as targets for cell proliferation, immuno-
suppression, and anti-cancer effects.181

One of the problems associated with these inhibitors, however, is
their off-target effects, particularly and not surprisingly, non-deliberate
immunosuppression. Thus, concerted efforts to generate compounds
lacking immunosuppressive activity have resulted in varied outcomes.
In particular, Debio 025 (Alisporivir) and NIM81182–84 have shown
great promise in multiple therapeutic areas.182 –184 Similarly, the devel-
opment of cell impermeable, non-immunosuppressive CSA analogues
has permitted the inhibition of extracellular CypA in mouse models of
inflammation.185

Finally, because many of the PPIase family members are secreted, they
might hold great promise to be a valuable biomarkers for diagnostic/
prognostic tests for cardiovascular-related diseases.

It is muted that the development of agents that selectively inactivate
PPIases or block the binding to their molecular targets or modulating
the secretory pathways may be an appealing approach to fully elucidate
the pathological mechanisms and provide treatments for CVDs, path-
ologies with a huge global impact in the world.
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