31 research outputs found

    The Spitzer-IRAC Point Source Catalog of the Vela-D Cloud

    Full text link
    This paper presents the observations of the Cloud D in the Vela Molecular Ridge, obtained with the IRAC camera onboard the Spitzer Space Telescope at the wavelengths \lambda = 3.6, 4.5, 5.8, 8.0 {\mu}m. A photometric catalog of point sources, covering a field of approximately 1.2 square degrees, has been extracted and complemented with additional available observational data in the millimeter region. Previous observations of the same region, obtained with the Spitzer MIPS camera in the photometric bands at 24 {\mu}m and 70 {\mu}m, have also been reconsidered to allow an estimate of the spectral slope of the sources in a wider spectral range. A total of 170,299 point sources, detected at the 5-sigma sensitivity level in at least one of the IRAC bands, have been reported in the catalog. There were 8796 sources for which good quality photometry was obtained in all four IRAC bands. For this sample, a preliminary characterization of the young stellar population based on the determination of spectral slope is discussed; combining this with diagnostics in the color-magnitude and color-color diagrams, the relative population of young stellar objects in the different evolutionary classes has been estimated and a total of 637 candidate YSOs have been selected. The main differences in their relative abundances have been highlighted and a brief account for their spatial distribution is given. The star formation rate has been also estimated and compared with the values derived for other star forming regions. Finally, an analysis of the spatial distribution of the sources by means of the two-point correlation function shows that the younger population, constituted by the Class I and flat-spectrum sources, is significantly more clustered than the Class II and III sources.Comment: Accepted by Ap

    First Direct Measurement of the ^{17}O(p,\gamma)^{18}F Reaction Cross-Section at Gamow Energies for Classical Novae

    Full text link
    Classical novae are important contributors to the abundances of key isotopes, such as the radioactive ^{18}F, whose observation by satellite missions could provide constraints on nucleosynthesis models in novae. The ^{17}O(p,\gamma)^{18}F reaction plays a critical role in the synthesis of both oxygen and fluorine isotopes but its reaction rate is not well determined because of the lack of experimental data at energies relevant to novae explosions. In this study, the reaction cross section has been measured directly for the first time in a wide energy range Ecm = 200 - 370 keV appropriate to hydrogen burning in classical novae. In addition, the E=183 keV resonance strength, \omega \gamma=1.67\pm0.12 \mueV, has been measured with the highest precision to date. The uncertainty on the ^{17}O(p,\gamma)^{18}F reaction rate has been reduced by a factor of 4, thus leading to firmer constraints on accurate models of novae nucleosynthesis.Comment: accepted by Phys. Rev. Let

    Pre- and post-transplant minimal residual disease predicts relapse occurrence in children with acute lymphoblastic leukaemia

    Get PDF
    Relapse remains the leading cause of treatment failure in children with acute lymphoblastic leukaemia (ALL) undergoing allogeneic haematopoietic stem cell transplantation (HSCT). We retrospectively investigated the prognostic role of minimal residual disease (MRD) before and after HSCT in 119 children transplanted in complete remission (CR). MRD was measured by polymerase chain reaction in bone marrow samples collected pre-HSCT and during the first and third trimesters after HSCT (post-HSCT1 and post-HSCT3). The overall event-free survival (EFS) was 50%. The cumulative incidence of relapse and non-relapse mortality was 41% and 9%. Any degree of detectable pre-HSCT MRD was associated with poor outcome: EFS was 39% and 18% in patients with MRD positivity <1 Ã— 10−3 and ≥1 Ã— 10−3, respectively, versus 73% in MRD-negative patients (P < 0·001). This effect was maintained in different disease remissions, but low-level MRD had a very strong negative impact only in patients transplanted in second or further CR. Also, MRD after HSCT enabled patients to be stratified, with increasing MRD between post-HSCT1 and post-HSCT3 clearly defining cohorts with a different outcome. MRD is an important prognostic factor both before and after transplantation. Given that MRD persistence after HSCT is associated with dismal outcome, these patients could benefit from early discontinuation of immunosuppression, or pre-emptive immuno-therapy

    Preparation and characterisation of isotopically enriched Ta2_2O5_5 targets for nuclear astrophysics studies

    Full text link
    The direct measurement of reaction cross sections at astrophysical energies often requires the use of solid targets of known thickness, isotopic composition, and stoichiometry that are able to withstand high beam currents for extended periods of time. Here, we report on the production and characterisation of isotopically enriched Ta2_2O5_5 targets for the study of proton-induced reactions at the Laboratory for Underground Nuclear Astrophysics facility of the Laboratori Nazionali del Gran Sasso. The targets were prepared by anodisation of tantalum backings in enriched water (up to 66% in 17^{17}O and up to 96% in 18^{18}O). Special care was devoted to minimising the presence of any contaminants that could induce unwanted background reactions with the beam in the energy region of astrophysical interest. Results from target characterisation measurements are reported, and the conclusions for proton capture measurements with these targets are drawn.Comment: accepted to EPJ

    Hier ist wahrhaftig ein Loch im Himmel - The NGC 1999 dark globule is not a globule

    Full text link
    The NGC 1999 reflection nebula features a dark patch with a size of ~10,000 AU, which has been interpreted as a small, dense foreground globule and possible site of imminent star formation. We present Herschel PACS far-infrared 70 and 160mum maps, which reveal a flux deficit at the location of the globule. We estimate the globule mass needed to produce such an absorption feature to be a few tenths to a few Msun. Inspired by this Herschel observation, we obtained APEX LABOCA and SABOCA submillimeter continuum maps, and Magellan PANIC near-infrared images of the region. We do not detect a submillimer source at the location of the Herschel flux decrement; furthermore our observations place an upper limit on the mass of the globule of ~2.4x10^-2 Msun. Indeed, the submillimeter maps appear to show a flux depression as well. Furthermore, the near-infrared images detect faint background stars that are less affected by extinction inside the dark patch than in its surroundings. We suggest that the dark patch is in fact a hole or cavity in the material producing the NGC 1999 reflection nebula, excavated by protostellar jets from the V 380 Ori multiple system.Comment: accepted for the A&A Herschel issue; 7 page

    Hi-GAL: The Herschel Infrared Galactic Plane Survey

    Get PDF
    Hi-GAL, the Herschel infrared Galactic Plane Survey, is an Open Time Key Project of the Herschel Space Observatory. It will make an unbiased photometric survey of the inner Galactic plane by mapping a 2° wide strip in the longitude range midlmid < 60° in five wavebands between 70 μm and 500 μm. The aim of Hi-GAL is to detect the earliest phases of the formation of molecular clouds and high-mass stars and to use the optimum combination of Herschel wavelength coverage, sensitivity, mapping strategy, and speed to deliver a homogeneous census of star-forming regions and cold structures in the interstellar medium. The resulting representative samples will yield the variation of source temperature, luminosity, mass and age in a wide range of Galactic environments at all scales from massive YSOs in protoclusters to entire spiral arms, providing an evolutionary sequence for the formation of intermediate and high-mass stars. This information is essential to the formulation of a predictive global model of the role of environment and feedback in regulating the star-formation process. Such a model is vital to understanding star formation on galactic scales and in the early universe. Hi-GAL will also provide a science legacy for decades to come with incalculable potential for systematic and serendipitous science in a wide range of astronomical fields, enabling the optimum use of future major facilities such as JWST and ALMA

    Hi-GAL: The Herschel Infrared Galactic Plane Survey

    Get PDF
    Hi-GAL, the Herschel infrared Galactic Plane Survey, is an Open Time Key Project of the Herschel Space Observatory. It will make an unbiased photometric survey of the inner Galactic plane by mapping a 2° wide strip in the longitude range ∣l∣ < 60° in five wavebands between 70 μm and 500 μm. The aim of Hi-GAL is to detect the earliest phases of the formation of molecular clouds and high-mass stars and to use the optimum combination of Herschel wavelength coverage, sensitivity, mapping strategy, and speed to deliver a homogeneous census of star-forming regions and cold structures in the interstellar medium. The resulting representative samples will yield the variation of source temperature, luminosity, mass and age in a wide range of Galactic environments at all scales from massive YSOs in protoclusters to entire spiral arms, providing an evolutionary sequence for the formation of intermediate and high-mass stars. This information is essential to the formulation of a predictive global model of the role of environment and feedback in regulating the star-formation process. Such a model is vital to understanding star formation on galactic scales and in the early universe. Hi-GAL will also provide a science legacy for decades to come with incalculable potential for systematic and serendipitous science in a wide range of astronomical fields, enabling the optimum use of future major facilities such as JWST and ALMA

    Comparing the structure of three dark globules

    No full text

    Structural analysis of molecular cloud maps: the case of the star forming Vela-D cloud

    Get PDF
    AbstractWe present the preliminary results of a statistical analysis carried out on a 1° × 1° CO(1-0) map of the intermediate mass star forming region Vela-D Cloud. Our goal is to determine statistical parameters suitable to quantify the structure of the observed cloud, in particular the power-law exponent of the map power spectrum. Furthermore, to help in removing the degeneracy implied in using a single parameter, we also resort to the multifractal approach

    The complete far infrared spectroscopic survey of Herbig AeBe stars obtained by ISO-LWS

    No full text
    The ISO-LWS archive has been systematically searched in order to obtain a complete far IR spectrophotometric survey of Herbig AeBe (HAEBE) stars. The investigated sample is constituted by 15 objects which, together with the 11 HAEBE we have published in two previous papers, represents about 25% of all the known HAEBE. This catalogue constitues an essential data-base in view of far IR forthcoming space missions (e.g. Herschel Space Observatory), whose scientific programs are now in the planning phase. The new sources are analysed following the same approach as in our previous papers and both differences and similarities are discussed in a coherent framework. The [OI] 63 μm and the [CII] 158 μm lines are observed in many of the investigated sources, while the [OI] 145 μm remains often undetected, due to its relative faintness. Molecular lines, in form of CO high-J rotational transitions are detected in only three cases and appear associated to local density peaks. A new class of ISO-LWS spectra of HAEBE emerges, constituted by objects without any detected gas feature either in emission or in absorption. Not unexpectedly, these HAEBE are isolated from molecular clouds and, as such, lack of the cold circumstellar material probed by far IR ionic and molecular transitions. By comparing line intensity ratios with model predictions we find that photodissociation caused by the stellar photons and active in a clumpy medium is likely the prevalent excitation mechanism for the far IR lines. Finally, an evolutionary trend is found according to which the contribution of the far IR line emission to the total emitted energy is less and less important with time
    corecore