168 research outputs found

    In vitro propagation of cedar (Cedrela odorata L.) from juvenile shoots

    Get PDF
    Garriga, M (Garriga, Miguel); Caligari, PDS (Caligari, Peter D. S.). Univ Talca, Inst Biol Vegetal & Biotecnol, Talca, ChileCedrela odorata L. is one of the most important timber species currently traded in the Caribbean and Central America; however, it has been intensively exploited. In vitro techniques and clonal propagation can help to develop new plantations and assist in establishing improvement programs for this species. The aim of this study was to develop a protocol to establish in vitro conditions and to micropropagate this species from nodal explants from juvenile cuttings taken from field trees. Disinfection of node explants with 5% propiconazole CE 25 during 3 min resulted in 100% explant disinfection and 60% morphogenic response on those established explants. Shoot development was optimized by cultivating in vitro node explants in Murashige and Skoog basal medium supplemented with 2 mg L(-1) 6-bencilaminopurine and 3 mg L(-1) naphthaleneacetic acid. This medium resulted in 100% shoot development from the in vitro node explants with a 3.93 cm mean height. Rooting was also stimulated 6 wk after individualization of the regenerated plants on the same micropropagation medium with a mean of 3.9 roots per plant. In vitro plants did not show morphologic differences when compared to ex vitro seeds

    Magnetic flux generation and transport in cool stars

    Full text link
    The Sun and other cool stars harbouring outer convection zones manifest magnetic activity in their atmospheres. The connection between this activity and the properties of a deep-seated dynamo generating the magnetic flux is not well understood. By employing physical models, we study the spatial and temporal characteristics of the observable surface field for various stellar parameters. We combine models for magnetic flux generation, buoyancy instability, and transport, which encompass the entire convection zone. The model components are: (1) a thin-layer alpha-Omega dynamo at the base of the convection zone; (2) buoyancy instabilities and the rise of flux tubes through the convection zone in 3D, which provides a physically consistent determination of emergence latitudes and tilt angles; and (3) horizontal flux transport at the surface. For solar-type stars and rotation periods longer than about 10 days, the latitudinal dynamo waves generated by the deep-seated alpha-Omega dynamo are faithfully reflected by the surface distribution of magnetic flux. For rotation periods of the order of two days, however, Coriolis acceleration of rising flux loops leads to surface flux emergence at much higher latitudes than the dynamo waves at the bottom of the convection zone reach. A similar result is found for a K0V star with a rotation period of two days. In the case of a rapidly rotating K1 subgiant, overlapping dynamo waves lead to noisy activity cycles and mixed-polarity fields at high latitudes.Comment: 14 pages, 14 figures. Accepted for publication in Astronomy & Astrophysic

    Magnetic flux emergence in granular convection: Radiative MHD simulations and observational signatures

    Full text link
    We study the emergence of magnetic flux from the near-surface layers of the solar convection zone into the photosphere. To model magnetic flux emergence, we carried out a set of numerical radiative magnetohydrodynamics simulations. Our simulations take into account the effects of compressibility, energy exchange via radiative transfer, and partial ionization in the equation of state. All these physical ingredients are essential for a proper treatment of the problem. Furthermore, the inclusion of radiative transfer allows us to directly compare the simulation results with actual observations of emerging flux. We find that the interaction between the magnetic flux tube and the external flow field has an important influence on the emergent morphology of the magnetic field. Depending on the initial properties of the flux tube (e.g. field strength, twist, entropy etc.), the emergence process can also modify the local granulation pattern. The emergence of magnetic flux tubes with a flux of 101910^{19} Mx disturbs the granulation and leads to the transient appearance of a dark lane, which is coincident with upflowing material. These results are consistent with observed properties of emerging magnetic flux.Comment: To appear in A&

    Simulation of the Formation of a Solar Active Region

    Full text link
    We present a radiative magnetohydrodynamics simulation of the formation of an Active Region on the solar surface. The simulation models the rise of a buoyant magnetic flux bundle from a depth of 7.5 Mm in the convection zone up into the solar photosphere. The rise of the magnetic plasma in the convection zone is accompanied by predominantly horizontal expansion. Such an expansion leads to a scaling relation between the plasma density and the magnetic field strength such that Bϱ1/2B\propto\varrho^{1/2}. The emergence of magnetic flux into the photosphere appears as a complex magnetic pattern, which results from the interaction of the rising magnetic field with the turbulent convective flows. Small-scale magnetic elements at the surface first appear, followed by their gradual coalescence into larger magnetic concentrations, which eventually results in the formation of a pair of opposite polarity spots. Although the mean flow pattern in the vicinity of the developing spots is directed radially outward, correlations between the magnetic field and velocity field fluctuations allow the spots to accumulate flux. Such correlations result from the Lorentz-force driven, counter-streaming motion of opposite-polarity fragments. The formation of the simulated Active Region is accompanied by transient light bridges between umbrae and umbral dots. Together with recent sunspot modeling, this work highlights the common magnetoconvective origin of umbral dots, light bridges and penumbral filaments.Comment: Accepted for publication in Ap

    The dynamical disconnection of sunspots from their magnetic roots

    Full text link
    After a dynamically active emergence phase, magnetic flux at the solar surface soon ceases to show strong signs of the subsurface dynamics of its parent magnetic structure. This indicates that some kind of disconnection of the emerged flux from its roots in the deep convection zone should take place. We propose a mechanism for the dynamical disconnection of the surface flux based upon the buoyant upflow of plasma along the field lines. Such flows arise in the upper part of a rising flux loop during the final phases of its buoyant ascent towards the surface. The combination of the pressure buildup by the upflow and the cooling of the upper layers of an emerged flux tube by radiative losses at the surface lead to a progressive weakening of the magnetic field in several Mm depth. When the field strength has become sufficiently low, convective motions and the fluting instability disrupt the flux tube into thin, passively advected flux fragments, thus providing a dynamical disconnection of the emerged part from its roots. We substantiate this scenario by considering the quasi-static evolution of a sunspot model under the effects of radiative cooling, convective energy transport, and pressure buildup by a prescribed inflow at the bottom of the model. For inflow speeds in the range shown by simulations of thin flux tubes, we find that the disconnection takes place in a depth between 2 and 6 Mm for disconnection times up to 3 days.Comment: 11 pages, 5 figures, accepted by A&

    Solar Flux Emergence Simulations

    Get PDF
    We simulate the rise through the upper convection zone and emergence through the solar surface of initially uniform, untwisted, horizontal magnetic flux with the same entropy as the non-magnetic plasma that is advected into a domain 48 Mm wide from from 20 Mm deep. The magnetic field is advected upward by the diverging upflows and pulled down in the downdrafts, which produces a hierarchy of loop like structures of increasingly smaller scale as the surface is approached. There are significant differences between the behavior of fields of 10 kG and 20 or 40 kG strength at 20 Mm depth. The 10 kG fields have little effect on the convective flows and show little magnetic buoyancy effects, reaching the surface in the typical fluid rise time from 20 Mm depth of 32 hours. 20 and 40 kG fields significantly modify the convective flows, leading to long thin cells of ascending fluid aligned with the magnetic field and their magnetic buoyancy makes them rise to the surface faster than the fluid rise time. The 20 kG field produces a large scale magnetic loop that as it emerges through the surface leads to the formation of a bipolar pore-like structure.Comment: Solar Physics (in press), 12 pages, 13 figur

    A retrospective of the GREGOR solar telescope in scientific literature

    Full text link
    In this review, we look back upon the literature, which had the GREGOR solar telescope project as its subject including science cases, telescope subsystems, and post-focus instruments. The articles date back to the year 2000, when the initial concepts for a new solar telescope on Tenerife were first presented at scientific meetings. This comprehensive bibliography contains literature until the year 2012, i.e., the final stages of commissioning and science verification. Taking stock of the various publications in peer-reviewed journals and conference proceedings also provides the "historical" context for the reference articles in this special issue of Astronomische Nachrichten/Astronomical Notes.Comment: 6 pages, 2 color figures, this is the pre-peer reviewed version of Denker et al. 2012, Astron. Nachr. 333, 81
    corecore