5,515 research outputs found

    Can Classical Noise Enhance Quantum Transmission?

    Get PDF
    A modified quantum teleportation protocol broadens the scope of the classical forbidden-interval theorems for stochastic resonance. The fidelity measures performance of quantum communication. The sender encodes the two classical bits for quantum teleportation as weak bipolar subthreshold signals and sends them over a noisy classical channel. Two forbidden-interval theorems provide a necessary and sufficient condition for the occurrence of the nonmonotone stochastic resonance effect in the fidelity of quantum teleportation. The condition is that the noise mean must fall outside a forbidden interval related to the detection threshold and signal value. An optimal amount of classical noise benefits quantum communication when the sender transmits weak signals, the receiver detects with a high threshold, and the noise mean lies outside the forbidden interval. Theorems and simulations demonstrate that both finite-variance and infinite-variance noise benefit the fidelity of quantum teleportation.Comment: 11 pages, 3 figures, replaced with published version that includes new section on imperfect entanglement and references to J. J. Ting's earlier wor

    Stochastic resonance in Gaussian quantum channels

    Get PDF
    We determine conditions for the presence of stochastic resonance in a lossy bosonic channel with a nonlinear, threshold decoding. The stochastic resonance effect occurs if and only if the detection threshold is outside of a "forbidden interval". We show that it takes place in different settings: when transmitting classical messages through a lossy bosonic channel, when transmitting over an entanglement-assisted lossy bosonic channel, and when discriminating channels with different loss parameters. Moreover, we consider a setting in which stochastic resonance occurs in the transmission of a qubit over a lossy bosonic channel with a particular encoding and decoding. In all cases, we assume the addition of Gaussian noise to the signal and show that it does not matter who, between sender and receiver, introduces such a noise. Remarkably, different results are obtained when considering a setting for private communication. In this case the symmetry between sender and receiver is broken and the "forbidden interval" may vanish, leading to the occurrence of stochastic resonance effects for any value of the detection threshold.Comment: 17 pages, 6 figures. Manuscript improved in many ways. New results on private communication adde

    Joint source-channel coding for a quantum multiple access channel

    Get PDF
    Suppose that two senders each obtain one share of the output of a classical, bivariate, correlated information source. They would like to transmit the correlated source to a receiver using a quantum multiple access channel. In prior work, Cover, El Gamal, and Salehi provided a combined source-channel coding strategy for a classical multiple access channel which outperforms the simpler "separation" strategy where separate codebooks are used for the source coding and the channel coding tasks. In the present paper, we prove that a coding strategy similar to the Cover-El Gamal-Salehi strategy and a corresponding quantum simultaneous decoder allow for the reliable transmission of a source over a quantum multiple access channel, as long as a set of information inequalities involving the Holevo quantity hold.Comment: 21 pages, v2: minor changes, accepted into Journal of Physics

    Entanglement-Assisted Quantum Error Correction with Linear Optics

    Get PDF
    We construct a theory of continuous-variable entanglement-assisted quantum error correction. We present an example of a continuous-variable entanglement-assisted code that corrects for an arbitrary single-mode error. We also show how to implement encoding circuits using passive optical devices, homodyne measurements, feedforward classical communication, conditional displacements, and off-line squeezers.Comment: 8 pages, 1 figure, major expansion of paper with detailed exampl

    The squashed entanglement of the noiseless quantum Gaussian attenuator and amplifier

    Get PDF
    We determine the maximum squashed entanglement achievable between sender and receiver of the noiseless quantum Gaussian attenuators and amplifiers and we prove that it is achieved sending half of an infinitely squeezed two-mode vacuum state. The key ingredient of the proof is a lower bound to the squashed entanglement of the quantum Gaussian states obtained applying a two-mode squeezing operation to a quantum thermal Gaussian state tensored with the vacuum state. This is the first lower bound to the squashed entanglement of a quantum Gaussian state and opens the way to determine the squashed entanglement of all quantum Gaussian channels. Moreover, we determine the classical squashed entanglement of the quantum Gaussian states above and show that it is strictly larger than their squashed entanglement. This is the first time that the classical squashed entanglement of a mixed quantum Gaussian state is determined

    Conditional decoupling of quantum information

    Get PDF
    Insights from quantum information theory show that correlation measures based on quantum entropy are fundamental tools that reveal the entanglement structure of multipartite states. In that spirit, Groisman, Popescu, and Winter [Phys. Rev. A 72, 032317 (2005)PLRAAN1050-294710.1103/PhysRevA.72.032317] showed that the quantum mutual information I(A;B) quantifies the minimal rate of noise needed to erase the correlations in a bipartite state of quantum systems AB. Here, we investigate correlations in tripartite systems ABE. In particular, we are interested in the minimal rate of noise needed to apply to the systems AE in order to erase the correlations between A and B given the information in system E, in such a way that there is only negligible disturbance on the marginal BE. We present two such models of conditional decoupling, called deconstruction and conditional erasure cost of tripartite states ABE. Our main result is that both are equal to the conditional quantum mutual information I(A;B|E) - establishing it as an operational measure for tripartite quantum correlations

    Geothermal probabilistic cost study

    Get PDF
    A tool is presented to quantify the risks of geothermal projects, the Geothermal Probabilistic Cost Model (GPCM). The GPCM model was used to evaluate a geothermal reservoir for a binary-cycle electric plant at Heber, California. Three institutional aspects of the geothermal risk which can shift the risk among different agents was analyzed. The leasing of geothermal land, contracting between the producer and the user of the geothermal heat, and insurance against faulty performance were examined

    Optimal tests for continuous-variable quantum teleportation and photodetectors

    Full text link
    Quantum teleportation is a primitive in several important applications, including quantum communication, quantum computation, error correction, and quantum networks. In this work, we propose an optimal test for the performance of continuous-variable (CV) quantum teleportation in terms of the energy-constrained channel fidelity between ideal CV teleportation and its experimental implementation. All work prior to ours considered suboptimal tests of the performance of CV teleportation, focusing instead on its performance for particular states, such as ensembles of coherent states, squeezed states, cat states, etc. Here we prove that the optimal state for testing CV teleportation is an entangled superposition of twin-Fock states. We establish this result by reducing the problem of estimating the energy-constrained channel fidelity between ideal CV teleportation and its experimental approximation to a quadratic program and solving it. As an additional result, we obtain an analytical solution to the energy-constrained diamond distance between a photodetector and its experimental approximation. These results are relevant for experiments that make use of CV teleportation and photodetectors.Comment: 20 pages, 3 figure
    corecore