191 research outputs found

    Filtration rates of the non-native Chinese mystery snail (Bellamya chinensis) and potential impacts on microbial communities

    Get PDF
    Invasive species in the phylum Mollusca, including gastropods and bivalves, have caused substantial impacts in freshwater ecosystems. The Chinese mystery snail, Bellamya chinensis, is a large viviparid snail native to Southeastern Asia and widely introduced throughout United States and parts of Canada and Europe. B. chinensis is a facultative filter-feeding detritivore that can both graze epiphytic diatoms using its radula and filter-feed its breathing water. Despite mounting concern associated with the expanding range and increasing abundance of B. chinensis in many parts of its invaded range, the potential ecological impacts of this non-native species remain largely unknown. Here, we used a series of laboratory experiments to assess filtration rates of B. chinensis and quantify its effects on microbial communities. According to both microcosm (24-hour, 4-L suspension) and mesocosm (5-day, 90-L suspension) experimental trials, B. chinensis exhibited an average filtration rate of 106-113 mL snail-1h-1(1.45 mL mg DW-1h-1) and an individual maximum of 471 mL snail-1h-1(6.15 mL mg DW-1h-1). These values are comparable to reported filtration rates for high-profile invasive, freshwater bivalves. Relationships between snail size and filtration rate relationship suggests that B. chinensis display an ontogenetic shift in feeding behavior from primarily radular grazing to increased filter-feeding at threshold size of approximately 44 mm shell height. Our experiments also revealed that high snail densities can result in small, significant shifts in bacterial community composition. These results suggest that B. chinensis may influence microbial communities either directly by using bacteria as a food source or indirectly by producing sufficiently large quantities of fecal and pseudo-fecal material to affect bacterial activity and growth. The overall ecological effects and importance of B. chinensis filtration behavior remain unclear, but our experimental results suggest that these impacts may be large and should be further investigated to better understand its potential role in coupling benthic and pelagic food webs in lake ecosystems.Las especies invasoras del phyllum Mollusca, incluyendo los gasterópodos y bivalvos, han causado impactos importantes en los ecosistemas dulceacuícolas. Bellamya chinensis, es un vivíparo de gran tamaño, nativo del sureste de Asia y ampliamente introducido a lo largo de los Estados Unidos y parte de Canadá y Europa. B. chinensis es una especie detritivora- filtradora facultativa, que puede tanto ramonear diatomeas epifitas usando su rádula como filtrar el agua que respiran. A pesar de la creciente preocupación asociada al incremento en la abundancia y rango de distribución de B. chinensis en las regiones ya colonizadas, el potencial impacto ecológico de esta especie introducida permanece ampliamente desconocido. En este estudio, usamos series de experimentos de laboratorio para evaluar las tasas de filtración de B. chinensis y cuantificar su efecto en las comunidades microbianas. De acuerdo con los experimentos realizados tanto en los microcosmos (24-hour, 4-L suspensión) como en los mesocosmos (5-day, 90-L suspensión), B. chinensis mostró una tasa promedio de filtración de 106-113 mL caracol-1h-1(1.45 mL mg peso seco-1h-1) y un máximo por individuo de 471 mL caracol-1h-1(6.15 mL mg peso seco-1h-1). Estos valores son comparables a otros reportados para especies de bivalvos dulceacuícolas altamente invasivas. La relación entre el tamaño de los caracoles y las tasas de filtración sugieren que B. chinensis muestra un cambio ontogénico en la manera de alimentarse, de ramoneo a una mayor alimentación por filtración, a partir de un umbral de tamaño de la concha de aproximadamente 44 mm de altura. Nuestros experimentos también revelan que altas densidades de caracoles generan pequeños cambios pero significativos en las comunidades microbianas. Estos resultados sugieren que B. chinensis afectaría las comunidades microbianas de forma directa usando las bacterias como fuente de alimentación o indirectamente al producir una cantidad de materia fecal o seudo-fecal, suficiente para afectar la actividad y crecimiento bacteriano. El impacto ecológico global y el comportamiento como filtrador de B. chinensis aún no son claros, pero nuestros resultados experimentales sugieren que estos impactos pueden ser importantes y se deben investigar mejor para entender más su papel potencial en el acoplamiento de las redes tróficas bentónicas y pelágicas en los sistemas lacustres

    Mississippi River and Sea Surface Height Effects on Oil Slick Migration

    Get PDF
    Millions of barrels of oil escaped into the Gulf of Mexico (GoM) after the 20 April, 2010 explosion of Deepwater Horizon (DH). Ocean circulation models were used to forecast oil slick migration in the GoM, however such models do not explicitly treat the effects of secondary eddy-slopes or Mississippi River (MR) hydrodynamics. Here we report oil front migration that appears to be driven by sea surface level (SSL) slopes, and identify a previously unreported effect of the MR plume: under conditions of relatively high river discharge and weak winds, a freshwater mound can form around the MR Delta. We performed temporal oil slick position and altimeter analysis, employing both interpolated altimetry data and along-track measurements for coastal applications. The observed freshwater mound appears to have pushed the DH oil slick seaward from the Delta coastline. We provide a physical mechanism for this novel effect of the MR, using a two-layer pressure-driven flow model. Results show how SSL variations can drive a cross-slope migration of surface oil slicks that may reach velocities of order km/day, and confirm a lag time of order 5–10 days between mound formation and slick migration, as observed form the satellite analysis. Incorporating these effects into more complex ocean models will improve forecasts of slick migration for future spills. More generally, large SSL variations at the MR mouth may also affect the dispersal of freshwater, nutrients and sediment associated with the MR plume

    River Influences on Shelf Ecosystems: Introduction and Synthesis

    Get PDF
    River Influences on Shelf Ecosystems (RISE) is the first comprehensive interdisciplinary study of the rates and dynamics governing the mixing of river and coastal waters in an eastern boundary current system, as well as the effects of the resultant plume on phytoplankton standing stocks, growth and grazing rates, and community structure. The RISE Special Volume presents results deduced from four field studies and two different numerical model applications, including an ecosystem model, on the buoyant plume originating from the Columbia River. This introductory paper provides background information on variability during RISE field efforts as well as a synthesis of results, with particular attention to the questions and hypotheses that motivated this research. RISE studies have shown that the maximum mixing of Columbia River and ocean water occurs primarily near plume liftoff inside the estuary and in the near field of the plume. Most plume nitrate originates from upwelled shelf water, and plume phytoplankton species are typically the same as those found in the adjacent coastal ocean. River-supplied nitrate can help maintain the ecosystem during periods of delayed upwelling. The plume inhibits iron limitation, but nitrate limitation is observed in aging plumes. The plume also has significant effects on rates of primary productivity and growth (higher in new plume water) and microzooplankton grazing (lower in the plume near field and north of the river mouth); macrozooplankton concentration (enhanced at plume fronts); offshelf chlorophyll export; as well as the development of a chlorophyll ?shadow zone? off northern Oregon

    Robust estimation of microbial diversity in theory and in practice

    Get PDF
    Quantifying diversity is of central importance for the study of structure, function and evolution of microbial communities. The estimation of microbial diversity has received renewed attention with the advent of large-scale metagenomic studies. Here, we consider what the diversity observed in a sample tells us about the diversity of the community being sampled. First, we argue that one cannot reliably estimate the absolute and relative number of microbial species present in a community without making unsupported assumptions about species abundance distributions. The reason for this is that sample data do not contain information about the number of rare species in the tail of species abundance distributions. We illustrate the difficulty in comparing species richness estimates by applying Chao's estimator of species richness to a set of in silico communities: they are ranked incorrectly in the presence of large numbers of rare species. Next, we extend our analysis to a general family of diversity metrics ("Hill diversities"), and construct lower and upper estimates of diversity values consistent with the sample data. The theory generalizes Chao's estimator, which we retrieve as the lower estimate of species richness. We show that Shannon and Simpson diversity can be robustly estimated for the in silico communities. We analyze nine metagenomic data sets from a wide range of environments, and show that our findings are relevant for empirically-sampled communities. Hence, we recommend the use of Shannon and Simpson diversity rather than species richness in efforts to quantify and compare microbial diversity.Comment: To be published in The ISME Journal. Main text: 16 pages, 5 figures. Supplement: 16 pages, 4 figure

    Effects of social approval bias on self-reported fruit and vegetable consumption: a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Self-reports of dietary intake in the context of nutrition intervention research can be biased by the tendency of respondents to answer consistent with expected norms (social approval bias). The objective of this study was to assess the potential influence of social approval bias on self-reports of fruit and vegetable intake obtained using both food frequency questionnaire (FFQ) and 24-hour recall methods.</p> <p>Methods</p> <p>A randomized blinded trial compared reported fruit and vegetable intake among subjects exposed to a potentially biasing prompt to that from control subjects. Subjects included 163 women residing in Colorado between 35 and 65 years of age who were randomly selected and recruited by telephone to complete what they were told would be a future telephone survey about health. Randomly half of the subjects then received a letter prior to the interview describing this as a study of fruit and vegetable intake. The letter included a brief statement of the benefits of fruits and vegetables, a 5-A-Day sticker, and a 5-a-Day refrigerator magnet. The remainder received the same letter, but describing the study purpose only as a more general nutrition survey, with neither the fruit and vegetable message nor the 5-A-Day materials. Subjects were then interviewed on the telephone within 10 days following the letters using an eight-item FFQ and a limited 24-hour recall to estimate fruit and vegetable intake. All interviewers were blinded to the treatment condition.</p> <p>Results</p> <p>By the FFQ method, subjects who viewed the potentially biasing prompts reported consuming more fruits and vegetables than did control subjects (5.2 vs. 3.7 servings per day, p < 0.001). By the 24-hour recall method, 61% of the intervention group but only 32% of the control reported eating fruits and vegetables on 3 or more occasions the prior day (p = 0.002). These associations were independent of age, race/ethnicity, education level, self-perceived health status, and time since last medical check-up.</p> <p>Conclusion</p> <p>Self-reports of fruit and vegetable intake using either a food frequency questionnaire or a limited 24-hour recall are both susceptible to substantial social approval bias. Valid assessments of intervention effects in nutritional intervention trials may require objective measures of dietary change.</p

    Global Patterns of Bacterial Beta-Diversity in Seafloor and Seawater Ecosystems

    Get PDF
    Background Marine microbial communities have been essential contributors to global biomass, nutrient cycling, and biodiversity since the early history of Earth, but so far their community distribution patterns remain unknown in most marine ecosystems. Methodology/Principal Findings The synthesis of 9.6 million bacterial V6-rRNA amplicons for 509 samples that span the global ocean's surface to the deep-sea floor shows that pelagic and benthic communities greatly differ, at all taxonomic levels, and share <10% bacterial types defined at 3% sequence similarity level. Surface and deep water, coastal and open ocean, and anoxic and oxic ecosystems host distinct communities that reflect productivity, land influences and other environmental constraints such as oxygen availability. The high variability of bacterial community composition specific to vent and coastal ecosystems reflects the heterogeneity and dynamic nature of these habitats. Both pelagic and benthic bacterial community distributions correlate with surface water productivity, reflecting the coupling between both realms by particle export. Also, differences in physical mixing may play a fundamental role in the distribution patterns of marine bacteria, as benthic communities showed a higher dissimilarity with increasing distance than pelagic communities. Conclusions/Significance This first synthesis of global bacterial distribution across different ecosystems of the World's oceans shows remarkable horizontal and vertical large-scale patterns in bacterial communities. This opens interesting perspectives for the definition of biogeographical biomes for bacteria of ocean waters and the seabed

    Phylogenetic Analysis Suggests That Habitat Filtering Is Structuring Marine Bacterial Communities Across the Globe

    Get PDF
    The phylogenetic structure and community composition were analysed in an existing data set of marine bacterioplankton communities to elucidate the evolutionary and ecological processes dictating the assembly. The communities were sampled from coastal waters at nine locations distributed worldwide and were examined through the use of comprehensive clone libraries of 16S ribosomal RNA genes. The analyses show that the local communities are phylogenetically different from each other and that a majority of them are phylogenetically clustered, i.e. the species (operational taxonomic units) were more related to each other than expected by chance. Accordingly, the local communities were assembled non-randomly from the global pool of available bacterioplankton. Further, the phylogenetic structures of the communities were related to the water temperature at the locations. In agreement with similar studies, including both macroorganisms and bacteria, these results suggest that marine bacterial communities are structured by “habitat filtering”, i.e. through non-random colonization and invasion determined by environmental characteristics. Different bacterial types seem to have different ecological niches that dictate their survival in different habitats. Other eco-evolutionary processes that may contribute to the observed phylogenetic patterns are discussed. The results also imply a mapping between phenotype and phylogenetic relatedness which facilitates the use of community phylogenetic structure analysis to infer ecological and evolutionary assembly processes

    The energy–diversity relationship of complex bacterial communities in Arctic deep-sea sediments

    Get PDF
    The availability of nutrients and energy is a main driver of biodiversity for plant and animal communities in terrestrial and marine ecosystems, but we are only beginning to understand whether and how energy–diversity relationships may be extended to complex natural bacterial communities. Here, we analyzed the link between phytodetritus input, diversity and activity of bacterial communities of the Siberian continental margin (37–3427 m water depth). Community structure and functions, such as enzymatic activity, oxygen consumption and carbon remineralization rates, were highly related to each other, and with energy availability. Bacterial richness substantially increased with increasing sediment pigment content, suggesting a positive energy–diversity relationship in oligotrophic regions. Richness leveled off, forming a plateau, when mesotrophic sites were included, suggesting that bacterial communities and other benthic fauna may be structured by similar mechanisms. Dominant bacterial taxa showed strong positive or negative relationships with phytodetritus input and allowed us to identify candidate bioindicator taxa. Contrasting responses of individual taxa to changes in phytodetritus input also suggest varying ecological strategies among bacterial groups along the energy gradient. Our results imply that environmental changes affecting primary productivity and particle export from the surface ocean will not only affect bacterial community structure but also bacterial functions in Arctic deep-sea sediment, and that sediment bacterial communities can record shifts in the whole ocean ecosystem functioning

    Soil pH mediates the balance between stochastic and deterministic assembly of bacteria

    Get PDF
    Little is known about the factors affecting the relative influences of stochastic and deterministic processes that govern the assembly of microbial communities in successional soils. Here, we conducted a meta-analysis of bacterial communities using six different successional soil datasets distributed across different regions. Different relationships between pH and successional age across these datasets allowed us to separate the influences of successional age (i.e., time) from soil pH. We found that extreme acidic or alkaline pH conditions lead to assembly of phylogenetically more clustered bacterial communities through deterministic processes, whereas pH conditions close to neutral lead to phylogenetically less clustered bacterial communities with more stochasticity. We suggest that the influence of pH, rather than successional age, is the main driving force in producing trends in phylogenetic assembly of bacteria, and that pH also influences the relative balance of stochastic and deterministic processes along successional soils. Given that pH had a much stronger association with community assembly than did successional age, we evaluated whether the inferred influence of pH was maintained when studying globally distributed samples collected without regard for successional age. This dataset confirmed the strong influence of pH, suggesting that the influence of soil pH on community assembly processes occurs globally. Extreme pH conditions likely exert more stringent limits on survival and fitness, imposing strong selective pressures through ecological and evolutionary time. Taken together, these findings suggest that the degree to which stochastic vs. deterministic processes shape soil bacterial community assembly is a consequence of soil pH rather than successional age
    corecore