901 research outputs found
Measurement of the Fermi Constant by FAST
An initial measurement of the lifetime of the positive muon to a precision of
16 parts per million (ppm) has been performed with the FAST detector at the
Paul Scherrer Institute. The result is tau_mu = 2.197083 (32) (15) microsec,
where the first error is statistical and the second is systematic. The muon
lifetime determines the Fermi constant, G_F = 1.166353 (9) x 10^-5 GeV^-2 (8
ppm).Comment: 15 pages, 6 figure
PReS-FINAL-2332: Activation-induced cell death of human monocytes as a novel mechanism fine-tuning inflammation and autoimmunity
A mobile data acquisition system
A mobile data aquisition (MobiDAQ) was developed for the ATLAS central hadronic
calorimeter (TileCal). MobiDAQ has been designed in order to test the functionalities of the TileCal
front-end electronics and to acquire calibration data before the final back-end electronics were built
and tested. MobiDAQ was also used to record the first cosmic ray events acquired by an ATLAS
subdetector in the underground experimental area
Electroweak Physics, Experimental Aspects
Collider measurements on electroweak physics are summarised. Although the
precision on some observables is very high, no deviation from the Standard
Model of electroweak interactions is observed. The data allow to set stringent
limits on some models for new physics.Comment: Plenary Talk at the UK Phenomenology Workshop on Collider Physics,
Durham, 199
Isotopic Dependence of the Nuclear Caloric Curve
The A/Z dependence of projectile fragmentation at relativistic energies has
been studied with the ALADIN forward spectrometer at SIS. A stable beam of
124Sn and radioactive beams of 124La and 107Sn at 600 MeV per nucleon have been
used in order to explore a wide range of isotopic compositions. Chemical
freeze-out temperatures are found to be nearly invariant with respect to the
A/Z of the produced spectator sources, consistent with predictions for expanded
systems. Small Coulomb effects (\Delta T \approx 0.6 MeV) appear for residue
production near the onset of multifragmentation.Comment: 11 pages, 3 figures, accepted for publ. in Phys. Rev. Let
Tracing a phase transition with fluctuations of the largest fragment size: Statistical multifragmentation models and the ALADIN S254 data
A phase transition signature associated with cumulants of the largest
fragment size distribution has been identified in statistical
multifragmentation models and examined in analysis of the ALADIN S254 data on
fragmentation of neutron-poor and neutron-rich projectiles. Characteristics of
the transition point indicated by this signature are weakly dependent on the
A/Z ratio of the fragmenting spectator source. In particular, chemical
freeze-out temperatures are estimated within the range 5.9 to 6.5 MeV. The
experimental results are well reproduced by the SMM model.Comment: 7 pages, 3 figures, Proceedings of the International Workshop on
Multifragmentation and Related Topics (IWM2009), Catania, Italy, November
2009
Neutron recognition in the LAND detector for large neutron multiplicity
The performance of the LAND neutron detector is studied. Using an
event-mixing technique based on one-neutron data obtained in the S107
experiment at the GSI laboratory, we test the efficiency of various analytic
tools used to determine the multiplicity and kinematic properties of detected
neutrons. A new algorithm developed recently for recognizing neutron showers
from spectator decays in the ALADIN experiment S254 is described in detail. Its
performance is assessed in comparison with other methods. The properties of the
observed neutron events are used to estimate the detection efficiency of LAND
in this experiment.Comment: 16 pages, 8 figure
Gross Properties and Isotopic Phenomena in Spectator Fragmentation
A systematic study of isotopic effects in the break-up of projectile
spectators at relativistic energies has been performed with the ALADiN
spectrometer at the GSI laboratory. Searching for signals of criticality in the
fragment production we have applied the model independent universal
fluctuations theory already proposed to track criticality signals in
multifragmentation to our data. The fluctuation of the largest fragment charge
and of the asymmetry of the two and three largest fragments and their bimodal
distribution have also been analysed.Comment: 6 pages, 4 figures, IX International Conference on Nucleus-Nucleus
Collisions, Rio de Janeiro, Brazil, August 28 - September 1, 200
Simultaneous Extraction of the Fermi constant and PMNS matrix elements in the presence of a fourth generation
Several recent studies performed on constraints of a fourth generation of
quarks and leptons suffer from the ad-hoc assumption that 3 x 3 unitarity holds
for the first three generations in the neutrino sector. Only under this
assumption one is able to determine the Fermi constant G_F from the muon
lifetime measurement with the claimed precision of G_F = 1.16637 (1) x 10^-5
GeV^-2. We study how well G_F can be extracted within the framework of four
generations from leptonic and radiative mu and tau decays, as well as from K_l3
decays and leptonic decays of charged pions, and we discuss the role of lepton
universality tests in this context. We emphasize that constraints on a fourth
generation from quark and lepton flavour observables and from electroweak
precision observables can only be obtained in a consistent way if these three
sectors are considered simultaneously. In the combined fit to leptonic and
radiative mu and tau decays, K_l3 decays and leptonic decays of charged pions
we find a p-value of 2.6% for the fourth generation matrix element |U_{e 4}|=0
of the neutrino mixing matrix.Comment: 19 pages, 3 figures with 16 subfigures, references and text added
refering to earlier related work, figures and text in discussion section
added, results and conclusions unchange
Recommended from our members
Challenges in QCD matter physics --The scientific programme of the Compressed Baryonic Matter experiment at FAIR
Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (sNN= 2.7--4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials (μB> 500 MeV), effects of chiral symmetry, and the equation of state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2024, in the context of the worldwide efforts to explore high-density QCD matter
- …
