25 research outputs found

    Promoting endothelial function by S-nitrosoglutathione through the HIF-1α/VEGF pathway stimulates neurorepair and functional recovery following experimental stroke in rats

    No full text
    Mushfiquddin Khan,1 Tajinder S Dhammu,1 Fumiyo Matsuda,1,2 Mauhammad Baarine,3 Tejbir Singh Dhindsa,1 Inderjit Singh,1 Avtar K Singh3,4 1Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA; 2School of Health Sciences, Kagoshima University, Kagoshima, Japan; 3Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA; 4Ralph H Johnson VA Medical Center, Charleston, SC, USA Background: For stroke patients, stimulating neurorepair mechanisms is necessary to reduce morbidity and disability. Our previous studies on brain and spinal cord trauma show that exogenous treatment with the S-nitrosylating agent S-nitrosoglutathione (GSNO) – a nitric oxide and glutathione metabolite of the human body – stimulates neurorepair and aids functional recovery. Using a rat model of cerebral ischemia and reperfusion (IR) in this study, we tested the hypothesis that GSNO invokes the neurorepair process and improves neurobehavioral functions through the angiogenic HIF-1α/VEGF pathway.Methods: Stroke was induced by middle cerebral artery occlusion for 60 minutes followed by reperfusion in adult male rats. The injured animals were treated with saline (IR group, n=7), GSNO (0.25 mg/kg, GSNO group, n=7), and GSNO plus the HIF-1α inhibitor 2-methoxyestradiol (2-ME) (0.25 mg/kg GSNO + 5.0 mg/kg 2-ME, GSNO + 2-ME group, n=7). The groups were studied for either 7 or 14 days to determine neurorepair mediators and functional recovery. Brain capillary endothelial cells were used to show that GSNO promotes angiogenesis and that GSNO-mediated induction of VEGF and the stimulation of angiogenesis are dependent on HIF-1α activity.Results: IR injury increased the expression of neurorepair mediators HIF-1α, VEGF, and PECAM-1 and vessel markers to a limited degree that correlate well with significantly compromised neurobehavioral functions compared with sham animals. GSNO treatment of IR not only remarkably enhanced further the expression of HIF-1α, VEGF, and PECAM-1 but also improved functioning compared with IR. The GSNO group also had a higher degree of vessel density than the IR group. Increased expression of VEGF and the degree of tube formation (angiogenesis) by GSNO were reduced after the inhibition of HIF-1α by 2-ME in an endothelial cell culture model. 2-ME treatment of the GSNO group also blocked not only GSNO’s effect of reduced infarct volume, decreased neuronal loss, and enhanced expression of PECAM-1 (P<0.001), but also its improvement of motor and neurological functions (P<0.001).Conclusion: GSNO stimulates the process of neurorepair, promotes angiogenesis, and aids functional recovery through the HIF-1α-dependent pathway, showing therapeutic and translational promise for stroke. Keywords: GSNO, IR, HIF-1α, VEGF, motor function, subtle behavior, neuroprotection, neurorepair, angiogenesis, S-nitrosylation, stroke&nbsp

    Peroxisome-mitochondria interplay and disease

    No full text
    Copyright © Springer International Publishing AG, Part of Springer Science+Business MediaPeroxisomes and mitochondria are ubiquitous, highly dynamic organelles with an oxidative type of metabolism in eukaryotic cells. Over the years, substantial evidence has been provided that peroxisomes and mitochondria exhibit a close functional interplay which impacts on human health and development. The so-called "peroxisome-mitochondria connection" includes metabolic cooperation in the degradation of fatty acids, a redox-sensitive relationship, an overlap in key components of the membrane fission machineries and cooperation in anti-viral signalling and defence. Furthermore, combined peroxisome-mitochondria disorders with defects in organelle division have been revealed. In this review, we present the latest progress in the emerging field of peroxisomal and mitochondrial interplay in mammals with a particular emphasis on cooperative fatty acid ÎČ-oxidation, redox interplay, organelle dynamics, cooperation in anti-viral signalling and the resulting implications for disease.BBSRCPortuguese Foundation for Science and Technology (FCT)FEDER/COMPETEMarie Curie

    Resveratrol Metabolites Modify Adipokine Expression and Secretion in 3T3-L1 Pre-Adipocytes and Mature Adipocytes

    Get PDF
    OBJECTIVE: Due to the low bioavailability of resveratrol, determining whether its metabolites exert any beneficial effect is an interesting issue. METHODS: 3T3-L1 maturing pre-adipocytes were treated during differentiation with 25 ”M of resveratrol or with its metabolites and 3T3-L1 mature adipocytes were treated for 24 hours with 10 ”M resveratrol or its metabolites. The gene expression of adiponectin, leptin, visfatin and apelin was assessed by Real Time RT-PCR and their concentration in the incubation medium was quantified by ELISA. RESULTS: Resveratrol reduced mRNA levels of leptin and increased those of adiponectin. It induced the same changes in leptin secretion. Trans-resveratrol-3-O-glucuronide and trans-resveratrol-4â€Č-O-glucuronide increased apelin and visfatin mRNA levels. Trans-resveratrol-3-O-sulfate reduced leptin mRNA levels and increased those of apelin and visfatin. CONCLUSIONS: The present study shows for the first time that resveratrol metabolites have a regulatory effect on adipokine expression and secretion. Since resveratrol has been reported to reduce body-fat accumulation and to improve insulin sensitivity, and considering that these effects are mediated in part by changes in the analyzed adipokines, it may be proposed that resveratrol metabolites play a part in these beneficial effects of resveratrol
    corecore