2,726 research outputs found
Hillslopes record the growth and decay of landscapes
Earth's surface archives the combined history of tectonics and erosion, which tend to roughen landscapes, and sediment transport and deposition, which smooth them. We analyzed hillslope morphology in the tectonically active Dragon’s Back Pressure Ridge in California, United States, to assess whether tectonic uplift history can be reconstructed using measurable attributes of hillslope features within landscapes. Hilltop curvature and hillslope relief mirror measured rates of vertical displacement caused by tectonic forcing, and their relationships are consistent with those expected when idealizing hillslope transport as a nonlinear diffusion process. Hilltop curvature lags behind relief in its response to changing erosion rates, allowing growing landscapes to be distinguished from decaying landscapes. Numerical modeling demonstrates that hillslope morphology may be used to infer changes in tectonic rates
A partition-free approach to transient and steady-state charge currents
We construct a non-equilibrium steady state and calculate the corresponding
current for a mesoscopic Fermi system in the partition-free setting. To this
end we study a small sample coupled to a finite number of semi-infinite leads.
Initially, the whole system of quasi-free fermions is in a grand canonical
equilibrium state. At t = 0 we turn on a potential bias on the leads and let
the system evolve. We study how the charge current behaves in time and how it
stabilizes itself around a steady state value, which is given by a
Landauer-type formula.Comment: 14 pages, submitte
Quantum Stochastic Processes: A Case Study
We present a detailed study of a simple quantum stochastic process, the
quantum phase space Brownian motion, which we obtain as the Markovian limit of
a simple model of open quantum system. We show that this physical description
of the process allows us to specify and to construct the dilation of the
quantum dynamical maps, including conditional quantum expectations. The quantum
phase space Brownian motion possesses many properties similar to that of the
classical Brownian motion, notably its increments are independent and
identically distributed. Possible applications to dissipative phenomena in the
quantum Hall effect are suggested.Comment: 35 pages, 1 figure
Discrete approximation of the free Fock space
International audienceWe prove that the free Fock space {\F}(\R^+;\C), which is very commonly used in Free Probability Theory, is the continuous free product of copies of the space \C^2. We describe an explicit embeding and approximation of this continuous free product structure by means of a discrete-time approximation: the free toy Fock space, a countable free product of copies of \C^2. We show that the basic creation, annihilation and gauge operators of the free Fock space are also limit of elementary operators on the free toy Fock space. When applying these constructions and results to the probabilistic interpretations of these spaces, we recover some discrete approximations of the semi-circular Brownian motion and of the free Poisson process. All these results are also extended to the higher multiplicity case, that is, {\F}(\R^+;\C^N) is the continuous free product of copies of the space \C^{N+1}
Non-equilibrium states of a photon cavity pumped by an atomic beam
We consider a beam of two-level randomly excited atoms that pass one-by-one
through a one-mode cavity. We show that in the case of an ideal cavity, i.e. no
leaking of photons from the cavity, the pumping by the beam leads to an
unlimited increase in the photon number in the cavity. We derive an expression
for the mean photon number for all times. Taking into account leaking of the
cavity, we prove that the mean photon number in the cavity stabilizes in time.
The limiting state of the cavity in this case exists and it is independent of
the initial state. We calculate the characteristic functional of this
non-quasi-free non-equilibrium state. We also calculate the energy flux in both
the ideal and open cavity and the entropy production for the ideal cavity.Comment: Corrected energy production calculations and made some changes to
ease the readin
Universal Power Law in the Noise from a Crumpled Elastic Sheet
Using high-resolution digital recordings, we study the crackling sound
emitted from crumpled sheets of mylar as they are strained. These sheets
possess many of the qualitative features of traditional disordered systems
including frustration and discrete memory. The sound can be resolved into
discrete clicks, emitted during rapid changes in the rough conformation of the
sheet. Observed click energies range over six orders of magnitude. The measured
energy autocorrelation function for the sound is consistent with a stretched
exponential C(t) ~ exp(-(t/T)^{b}) with b = .35. The probability distribution
of click energies has a power law regime p(E) ~ E^{-a} where a = 1. We find the
same power law for a variety of sheet sizes and materials, suggesting that this
p(E) is universal.Comment: 5 pages (revtex), 10 uuencoded postscript figures appended, html
version at http://rainbow.uchicago.edu/~krame
Progress report and first operation of the GANIL injector
http://accelconf.web.cern.ch/AccelConf/c81/papers/abp-07.pdfInternational audienc
Fluctuations of Quantum Currents and Unravelings of Master Equations
The very notion of a current fluctuation is problematic in the quantum
context. We study that problem in the context of nonequilibrium statistical
mechanics, both in a microscopic setup and in a Markovian model. Our answer is
based on a rigorous result that relates the weak coupling limit of fluctuations
of reservoir observables under a global unitary evolution with the statistics
of the so-called quantum trajectories. These quantum trajectories are
frequently considered in the context of quantum optics, but they remain useful
for more general nonequilibrium systems.
In contrast with the approaches found in the literature, we do not assume
that the system is continuously monitored. Instead, our starting point is a
relatively realistic unitary dynamics of the full system.Comment: 18 pages, v1-->v2, Replaced the former Appendix B by a (thematically)
different one. Mainly changes in the introductory Section 2+ added reference
- …
